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Abstract: We have developed an implicit solvent effective potential (AGBNP) that is suitable for molecular dynamics
simulations and high-resolution modeling. It is based on a novel implementation of the pairwise descreening Gener-
alized Born model for the electrostatic component and a new nonpolar hydration free energy estimator. The nonpolar
term consists of an estimator for the solute-solvent van der Waals dispersion energy designed to mimic the continuum
solvent solute-solvent van der Waals interaction energy, in addition to a surface area term corresponding to the work
of cavity formation. AGBNP makes use of a new parameter-free algorithm to calculate the scaling coefficients used in
the pairwise descreening scheme to take into account atomic overlaps. The same algorithm is also used to calculate
atomic surface areas. We show that excellent agreement is achieved for the GB self-energies and surface areas in
comparison to accurate, but much more expensive, numerical evaluations. The parameter-free approach used in AGBNP
and the sensitivity of the AGBNP model with respect to large and small conformational changes makes the model
suitable for high-resolution modeling of protein loops and receptor sites as well as high-resolution prediction of the
structure and thermodynamics of protein-ligand complexes. We present illustrative results for these kinds of bench-
marks. The model is fully analytical with first derivatives and is computationally efficient. It has been incorporated into
the IMPACT molecular simulation program.
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Introduction

Hydration phenomena play an important role in virtually every
process occurring in aqueous solution. Hydration has a particularly
large effect on the thermodynamics of biological processes that
involve the breakage or formation of noncovalent bonds. The
accurate modeling of hydration thermodynamics is therefore es-
sential for predicting protein structures, ligand binding free ener-
gies, and conformational equilibria.1–5

Numerous stringent requirements make the development of
practically useful solvation free energy models for biological ap-
plications very challenging. In order to be applicable to ligand
binding affinity prediction, the model should be accurate over a
wide range of molecular sizes, from small molecules to large
biological macromolecules, and over a wide range of hydrophobic,
polar, and ionic functional groups. In order to study protein fold-
ing, allosteric reactions, and flexible receptor and ligand docking,
the model must be able to describe hydration free energy differ-
ences between different molecules as well as different conforma-

tions of the same molecule, including large scale protein motions
and the motion of only a few atoms. Finally, the model needs to be
computationally efficient, and should be expressed in analytical
form with analytical gradients for seamless incorporation in a
molecular mechanics code to perform conformational sampling
and energy optimization calculations. Although models with some
of these characteristics exist,4–12 none of them meets all the above
requirements.

Explicit solvent models provide the most detailed and complete
description of hydration phenomena.13 They are, however, com-
putationally demanding not only because of the large number of
solvent atoms involved, but also because of the need to average
over many solvent configurations to obtain meaningful thermody-
namic data. Implicit solvent models14 offer an attractive alternative
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and have been shown to be useful for applications including
protein folding15,16 and protein native fold recognition,17,18 small
molecule hydration free energy prediction,6,11,19 and binding af-
finity prediction.20,21

In modern implicit solvent models9 the solvation free energy is
typically decomposed into a nonpolar component and an electro-
static component. The nonpolar component corresponds to the free
energy of hydration of the uncharged solute, and the electrostatic
component, computed using dielectric continuum models, corre-
sponds to the free energy of turning on the solute partial charges.

Dielectric continuum methods account for the electrostatic
component by treating the water solvent as a uniform high-dielec-
tric continuum.22 Methods based on the numerical solution of the
Poisson-Boltzmann (PB) equation23,24 provide a virtually exact
representation of the response of the solvent within the dielectric
continuum approximation. Their computational complexity is,
however, still comparable to explicit solvent models and they are
not easily integrated in molecular dynamics simulation programs
due to the difficulties associated with calculating the forces asso-
ciated with the electrostatic polarization energy. Recent advances
extending dielectric continuum approaches have focused on the
development of Generalized Born (GB) models,10,25 which have
been shown to reproduce with good accuracy PB12,26,27 and ex-
plicit solvent28 results at a fraction of the computational expense.
The development of computationally efficient analytical and dif-
ferentiable GB methods with gradients based on pairwise de-
screening schemes29,30 has made possible the integration of GB
models in molecular dynamics packages for biological simula-
tions.7,31–33

Despite the fact that nonpolar hydration forces dominate when-
ever hydrophobic interactions34 are important, the general avail-
ability of accurate models for the nonpolar component of the
hydration free energy is lacking. The structure and properties of
proteins in water is highly influenced by hydrophobic interac-
tions.1,2,35,36 Hydrophobic interactions also play a key role in the
mechanism of ligand binding to proteins.8,37–39 Empirical surface
area models40 for the nonpolar component of the solvation free
energy are widely used.6,19,25,41–47 Surface area models are useful
as a first approximation; however, deficiencies are observed43,48,49

that are particularly severe in the context of high resolution mod-
eling and force field transferability.50

In this article we develop the Analytical Generalized Born plus
Nonpolar (AGBNP) model, an implicit solvent model based on the
GB model25–28,32,51 for the electrostatic component, and on the
decomposition of the nonpolar hydration free energy into a cavity
component based on the solute surface area and a solute-solvent
van der Waals interaction free energy component modeled using
an estimator based on the Born radius of each atom.

The electrostatic solvation model (AGB) is a pairwise de-
screening GB scheme motivated by the model of Hawkins et al.30

The Born radius of each atom is obtained by summing its pairwise
descreening interactions with the other solute atoms. A pairwise
descreening interaction is defined as the integral of the 1/r4 func-
tion centered on one atom over the portion of the van der Waals
volume of the other atom that does not intersect the van der Waals
volume of the first. Scaling coefficients are assigned to each atom
to offset the overcounting of regions of space occupied by more
than one atom. The main distinction between AGB and the model

of Hawkins et al.30 is that AGB computes the scaling factors that
account for atomic overlaps from the geometry of the molecule
rather than introducing them as geometry-independent parameters
fit to either experiments or to numerical PB results. This enhances
the sensitivity of the AGB model with respect to small conforma-
tional changes, making it particularly suitable for high-resolution
modeling of protein loops and receptor sites as well as for high-
resolution prediction of the structure and thermodynamics of pro-
tein-ligand complexes. In AGB the atomic scaling factors are
obtained by partitioning the solute volume into volumes assigned
exclusively to each atom. The partitioning of the solute volume is
performed with an algorithm based on the Poincaré formula,
described in the following section, and implemented using a
Gaussian overlap approximation to compute the volume of inter-
section of multiple atomic spheres. The same algorithm is used to
compute the solute volume and atomic surface areas.

Previously proposed analytical pairwise descreening GB mod-
els7,31,32,52 require the parameterization of scaling coefficients to
treat the effects of atomic overlaps. Parameterized models are
unavoidably biased toward their training sets. A parameterization
based on native protein structures, for example, reflects the aver-
age atomic density of native proteins, which is very high, and
yields parameters that are not as transferable to non-native protein
structures and therefore are less accurate for protein structure
prediction. Pairwise GB models in which the scaling coefficients
are independent of molecular geometry30,31,52 are not optimal for
high-resolution modeling of protein-ligand binding, which re-
quires an energy function able to respond to both global confor-
mational changes and smaller atomic rearrangements. The param-
eter-free approach employed in the AGB model to calculate
scaling coefficients is particularly useful when treating unusual
functional groups often found when screening large numbers of
ligand candidates. The scaling coefficients derive from a training
set in which a particular functional group that is not represented
may be unsuitable for such a functional group. On the other hand,
it is impractical to construct a training set in which all possible
functional groups and combinations of functional groups are rep-
resented. The parameter-free analytical scheme used by AGB
ensures that each atom in any molecule is assigned proper scaling
coefficients.

The nonpolar hydration free energy estimator proposed in this
article is based on the decomposition of the nonpolar free energy
into a cavity term, proportional to surface area, and an attractive
dispersion energy term, which approximates the continuum solvent
solute-solvent van der Waals interaction energy assuming that the
solvent density outside the solute is homogeneous.50 The func-
tional form of the nonpolar hydration free energy proposed here
differs in substance from models based on only the solute surface
area. This form is motivated by a series of recent studies of small
molecules11,49,53 and macromolecules50,54 that show that some
characteristics of the nonpolar hydration free energy are not cap-
tured well by models based only on surface area. As described in
the following sections, the nonpolar hydration free energy estima-
tor has been formulated in analytical form. We employ an efficient
analytical algorithm to compute the solute surface area based on
the same algorithm used to compute the scaling coefficients for the
GB hydration free energy calculation. For the van der Waals
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hydration free energy term we employ a functional form based on
the atomic Born radii.

It has been generally the norm to test the accuracy of GB
models against the results of continuum dielectric PB calcula-
tions.7,12,26,27,52 Our approach has been to validate implicit solvent
models primarily against experimental data11,55 and explicit sol-
vent predictions.28,50,56 The reason behind this choice is our belief
that the dielectric continuum assumption for the solvent introduces
a more severe approximation than any additional approximation
introduced by the GB model. In this article our goal is to design an
analytical scheme to generate Born radii and atomic surface areas
that respond correctly to conformational changes. We show that
the AGBNP analytical estimates of the geometrical quantities used
in the AGBNP model (Born radii and atomic surface areas) are
indeed in very good agreement with high-accuracy numerical
calculations of these same quantities.

To test the stability of native protein structures, we present
a series of long molecular dynamics simulations using the
AGBNP model. The measured CPU speed of AGBNP is 20 to
26% of the CPU speed in vacuum. To demonstrate the appli-
cability of the AGBNP model to high-resolution structure pre-
diction applications, we also test the ability of the OPLS/
AGBNP model in distinguishing the native conformation from
a set of high quality decoy sets of protein loops and protein-
ligand binding complexes.

Methods

Hydration Free Energy Decomposition

The hydration free energy �Gh is defined as the free energy
change for transferring a molecule from the gas phase to the water
solvent phase. The transfer process can be decomposed into a
series of steps: first, the atomic partial charges and van der Waals
interactions of the solute are removed in vacuum, then the resulting
solute cavity is transferred into aqueous solution, and the solute’s
van der Waals interactions and partial charges are re-
stored.11,19,25,43,57 This is illustrated in terms of a thermodynamic
cycle (see Fig. 1) whereby the solvation free energy can be
expressed as

�Gh � �Gelec � �Gnp � �Gelec � �Gcav � �GvdW (1)

where �Gelec is the electrostatic contribution to the solvation free
energy, which is the difference between the work, Wchg

(w), of charg-
ing the solute in solution, and the work, Wchg

(v) , of charging the
solute in vacuum, �Gcav is the cavity hydration free energy, and
�GvdW is the free energy for establishing the solute-solvent van
der Waals dispersion interactions. Each free energy component is
modeled separately by the AGBNP model, as described in detail in
the following sections.

Figure 1. Thermodynamic cycle depicting the decomposition of the solvation free energy into electro-
static and nonpolar components. Starting from the upper left state and moving clockwise, the sequence of
steps is: uncharging of the solute in vacuum, removal of the solute-solvent van der Waals intersection in
vacuum (there is no free energy change associated with this step because of the lack of solvent molecules),
hydration of the solute cavity, establishment of the solute-solvent van der Waals intersections in water,
and charging of the solute in water.
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Volume and Surface Area Model

The solute volume is described as a set of overlapping spheres of
radius Ri centered on the atomic positions ri. We have imple-
mented a model for calculating the solute volume and solute
surface area based on the Poincaré formula for the union of N
spheres.58 According to the Poincaré formula (also known as the
inclusion-exclusion principle) the solute volume is given by

V � �
i

Vi � �
i�j

Vij � �
i�j�k

Vijk � . . . (2)

where Vi � 4�Ri
3/3 is the volume of atom i, Vij is the volume of

intersection of atoms i and j (second order intersection), Vijk is the
volume of intersection of atoms i, j, and k (third order intersec-
tion), and so on. We define the self-volume V�i of atom i as the
volume of atom i, minus one-half of the second order intersection
volumes made by atom i and one other atom, plus one-third of the
sum of third order intersection volumes made by atom i and two
other atoms, and so forth:

V�i � Vi �
1

2 �
j

Vij �
1

3 �
j�k

Vijk � . . . (3)

It can be shown that the summing of the self-volumes of all the
atoms yields eq. (2), the total volume of the molecule, thus

V � �
i

V�i (4)

Equation (4) leads to the interpretation of the self-volume of an
atom as a measure of the solute volume that belongs exclusively to
that atom. Due to the overlaps with other atoms, the self-volume V�i of
an atom is smaller than the actual volume Vi of the atom. The ratio

si �
V�i
Vi

� 1 (5)

between the self-volume and the volume of the atom measures the
fraction of the van der Waals volume of atom i that is considered
self-volume; it is used below to evaluate the GB solvation energy
of the molecule.

The van der Waals surface area Ai of atom i is given by the
derivative of the solute volume with respect to the radius Ri

59:

Ai �
�V

�Ri
(6)

� 4�Ri
2 � �

j

�Vij

�Ri
� �

j�k

�Vijk

�Ri
� . . . (7)

where eq. (7) follows from inserting eq. (2) into eq. (6).
It is impractical to calculate the atomic self-volumes [eq. (3)]

by exact evaluation of the spherical intersection volumes Vijkl
. . . .58

The calculation of the atomic self-volumes and surface areas is instead
implemented using an algorithm based on the approximate method

proposed by Grant and Pickup.60 According to their method the
volume of each atom is described by a Gaussian density function

�i�r� � p exp��ci�r � ri�
2	 (8)

The overlap volume formed by n spheres is then approximated by
the integral of the product of the n corresponding Gaussian func-
tions:

V12 · · · n � V12 · · · n
g � � d3r�1�r��2�r� · · · �n�r� (9)

which is available in analytic form:

V12 · · · n
g � p12 · · · nexp��K12 · · · n�� �

�12 · · · n
�3/ 2

(10)

where

p12 · · · n � pn (11)

K12 · · · n �
1

�12 · · · n
�
i�1

n �
j�i
1

n

cicjrij
2 (12)

and

�12 · · · n � �
i�1

n

ci (13)

The Gaussian exponent parameter ci determines the “softness” of
the atomic solute density. It is set as

ci �
�

Ri
2 (14)

where � is a dimensionless parameter that regulates the diffuseness
of the Gaussian function. To satisfy the requirement that the
integral of �i(r) reproduces the hard-sphere volume 4�Ri

3/3 of the
atom, the parameter p is chosen such that

p �
4�

3 � �

��
3/ 2

(15)

The use of a large � gives a large p and hence a narrow and tall
Gaussian, whereas a small � gives a short and diffuse Gaussian. In
this work we set � � 2.227, which results in p � 2.5. This value
of � was shown by Grant and Pickup60 to accurately reproduce the
volume and van der Waals surface areas of small molecules and
proteins. No further attempt was made in this work to optimize the
� parameter.
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GB Model

In the GB model10 the electrostatic component of the hydration
free energy is estimated as

�Gelec � �GGB � u	 �
ij

qiqj

fij
(16)

where

u	 � �
1

2 � 1

	in
�

1

	w
� (17)

where 	in is the dielectric constant of the interior of the solute, 	w

is the dielectric constant of the solvent, qi and qj are the charges
of atom i and j, and

fij � �rij
2 � BiBjexp��rij

2 /4BiBj� (18)

where Bi and Bj are the Born radii of atoms i and j defined below.
The summation in eq. (16) runs for all atom pairs (i, j) including
i � j. The diagonal i � j terms can be separated from off-diagonal
terms i � j yielding the equivalent expression

�GGB � u	 �
i

qi
2

Bi
� 2u	 �

i�j

qiqj

fij
(19)

The first term at the right hand side of eq. (19) is the sum of the GB
self-energies of the atoms of the molecule, the second term is the
sum of the GB pair-energies. The self-energy of atom i, corre-
sponding to the solvation energy of the solute when only the
charge of atom i is nonzero, measures the energy of atom i in the
reaction field due to the polarization of the solvent induced by the
partial charge of atom i in the solute cavity. The self-energy is
largest for the atoms that are most exposed to the solvent because
they are capable of inducing stronger polarization fields. This
effect is captured by the GB model in that atoms exposed to the
solvent have smaller Born radii whereas buried atoms tend to have
larger Born radii. The pair-energy term corresponds to the damp-
ening of electrostatic interactions in a high dielectric medium due
to the screening of the solute charges. The GB equation [eq. (19)]
can be shown to be an exact representation of the electrostatic
charging free energy of the solute in a continuum dielectric in the
two limiting cases of infinite atomic separation and complete
atomic overlap.25

The solute cavity is described as a set of overlapping spheres of
radius Ri centered on the atomic positions ri. The Born radius of
atom i is defined as the radius of the monoatomic solute with
partial charge qi whose continuum dielectric hydration free energy
is equal to the self-energy of atom i. The self-energy of atom i is
defined as the hydration free energy of the solute when the atomic
partial charges of all the solute atoms, except atom i, are set to
zero. In the Coulomb field approximation,31 the expression for the
Born radius is given by the integral of 1/r4 centered on atom i over
the solvent region:

1

Bi
� 
i �

1

4� �
Solvent

d3r
1

�r � ri�
4 (20)

The accuracy of the Coulomb field approximation [eq. (20)] has
been analyzed using exact analytical models10,29,31 and accurate
numerical PB calculations.61,62 It has been found to be generally
acceptable with the exception of cases with very asymmetric solute
geometries, where it tends to overestimate the values of the Born
radii. Empirical corrections to Coulomb field approximation have
been proposed.27,62 It has been pointed out that approximations in
the integration procedure to obtain the Born radii may actually be
of more significance than the Coulomb field approximation it-
self.61

Pairwise Solute Descreening Approximation

By adding and subtracting from eq. (20) the expression for the
inverse of the Born radius of a solute composed only of atom i, we
obtain a computationally more convenient integral expression for
the inverse Born radius26:


i �
1

Ri
�

1

4� �
�i

d3r
1

�r � ri�
4 (21)

where �i is the bounded region corresponding to the solute vol-
ume excluding the atomic sphere corresponding to atom i. In eq.
(21), 1/Ri is the inverse Born radius of atom i in the absence of all
the other solute atoms. The second term on the right hand side of
eq. (21) takes into account the displacement of the solvent dielec-
tric due to the other solute atoms. In the pairwise solute descreen-
ing approximation this term is approximated by a pairwise
sum29,30


i � 
i
0 �

1

4� �
j�i

Qji (22)

where 
i
0 � 1/Ri and

Qji � �
�ji

d3r
1

�r � ri�
4 (23)

is the integral (available in analytic form, see Appendix B) of (r �
ri)

�4 over the volume, �ji, of the atomic sphere corresponding to
solute atom j that lies outside atom i (see Fig. 2).

Due to the overcounting of regions that lie inside more than one
atomic sphere, the value of the Born radius of atom i would be
significantly overestimated if the full descreening integral Qji is
used in eq. (22). To take into account overcounting, scaling coef-
ficients sji � 1 are introduced that reduce the effect of the
descreening of atom j on atom i; thereby eq. (22) becomes


i � 
i
0 �

1

4� �
j�i

sjiQji (24)
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The scaling coefficients should be chosen such that the pairwise
descreening sum in eq. (24) approximates the integral of (r �
ri)

�4 over the solute volume outside atom i [eq. (21)]. The atomic
self-volumes [eq. (3)], which measure the amount of effective
volume assigned to each atom, are a natural choice in deriving
appropriate scaling coefficients. An atom with a small self-volume
should descreen other atoms to a lesser extent than an atom with a
larger self-volume. The relationship between self-volumes and
pairwise descreening scaling coefficients is derived by requiring
that the pairwise sum (1/4�) ¥j�i sji�ji reproduces the volume of
the solute outside atom i. Here �ji is defined in analogy with Qji

[eq. (23)] by the integral of the unit function, rather than the
function (r � ri)

�4, over the solute volume outside atom i:

�ji � �
�ji

d3r (25)

It can be shown that the identity

�i �
1

4� �
j�i

sji�ji (26)

is obtained when the scaling coefficients sji are chosen as the
self-volume scaling factor for atom j [eq. (5)] when atom i is
removed from the solute. With this choice of scaling coefficients,
therefore, the best possible uniform coverage of the domain of
integration is established.

The geometrical interpretation of this is illustrated in Figure 3.
The van der Waals volume of the solute outside atom i is parti-
tioned into volume intersections defined by the boundaries of the
spherical atomic volumes. Each intersection belongs to one or
more atoms. In eq. (24) the integral of (r � ri)

�4 over an
intersection volume belonging to n atoms is counted n times. The
self-volume scaling coefficients in eq. (24) reduce the contribution

from each atom to account for the fact that intersections belonging
to multiple atoms are integrated over more than once. The self-
volume scaling coefficients yield [eq. (26)] the overall volume �i

of the domain of integration exactly; therefore, when using the
self-volume scaling factors sji, on average each volume element is
weighted equally.

The calculation of the self-volume scaling factors follows the
same algorithm used for the calculation of the atomic surface
areas. The direct calculation of the self-volume scaling coefficient
sji (the self-volume solute factor of atom j when atom i is removed
from the solute) would substantially increase the computationally
complexity of the pairwise descreening algorithm. It would entail
calculating multiple times the self-volume of atom j, once for each
ij pairwise descreening interaction, by removing, from the expres-
sion of the self-volume of atom j from eq. (3), all overlap volumes
Vijk

. . . of any order that include atoms i and j. To simplify the
calculation we adopted the approximate expression

sji � sj �
1

2

Vij

Vj
(27)

based on subtracting from the self-volume of atom j only one-half
the Vij direct two-body overlap volume. We found that eq. (27) is
a good approximation to sji and it is exact when intersections of
order three or higher are absent.

It is useful to compare the pairwise descreening scheme pro-
posed here with other pairwise descreening methods. To take into
account atomic overlaps, Hawkins et al.30 have introduced a set of

Figure 3. Diagram illustrating the role of volume intersections in the
calculation of the Born radius of atom i (upper left, heavy line) using
the pairwise descreening approximation and the self-volume rescaling
factors [eq. (24)]. Intersections of higher order are represented by
darker shades of gray. Volume elements inside intersection regions are
overcounted but, when using the self-volume scaling factors sji, the
average weight assigned to each volume element is approximately 1.

Figure 2. A diagram showing the portion of the volume of atom j
(shaded area) over which the function (r � ri)

�4 is integrated to
obtain the contribution [eq. (23)] of atom j to the Born radius of atom
i within the pairwise descreening approximation.
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constant scaling factors Sj for each atom type (hydrogen, carbon,
oxygen, and nitrogen) that reduce the radius of atom j used in the
calculation of Qji. However in the approach of Hawkins et al. the
radius scaling parameters Sj do not depend on solute geometry and
chemical functionality. According to their model, for example, the
radius of two atoms with potentially very different degrees of
overlap with other atoms (such as a primary and a tertiary aliphatic
carbon) would be reduced by the same amount. Similarly, in the
ACE model of Schaefer and Karplus31 geometry-independent ef-
fective integration volumes are assigned to each atom based on the
atom type. Values of the effective atomic volumes are available
only for functional groups present in proteins. Note, moreover, that
in the ACE model the pairwise descreening function is derived
with the solute atomic volumes and charge densities described by
Gaussian functions. In the AGBNP method proposed here Gauss-
ian atomic volume densities are used solely as a computational
device to efficiently compute self-volume scaling factors, whereas
the pairwise descreening function Qji (see Appendix B) is based
on using spherical atomic integration volumes. To address atomic
overlaps, Qiu et al.7 have introduced multiplicative parameters Pn

to express Qji that depend on whether atoms i and j are chemically
bonded (n � 2), or form a bond angle (n � 3), or are otherwise
nonbonded (n � 4). In the model of Qiu et al. the parameters
depend only on the direct relationship between atoms j and i and
do not take into account the variability of overlapping patterns of
atom j with other solute atoms, which themselves may or may not
overlap with atom i. Moreover, Qiu et al. make the additional
approximation that Qji can be approximated as Vj/rji

4 . This ap-
proximation, based on the assumption that the function (r � ri)

�4

is constant within the volume of atom j, is expected to be mostly
in error for nearest neighbor pairs that contribute the most to the
Born radius.

The strategy proposed here for the calculation of the Born radii
within the pairwise descreening approximation provides improved
accuracy for the Born radii over previously proposed pairwise
methods.7,30,31 In our scheme the pairwise contributions Qij are
calculated exactly taking into account the possible overlap be-
tween atoms i and j, and the rescaling parameters sji we adopt,
derived from the self-volume rescaling parameters sj, are automat-
ically adjusted according to the current solute conformation. This
scheme for calculating the Born radii can be applied to molecules
with any combination of functional groups without requiring a
previous parameterization step. Furthermore, because it is based
on parameter-free estimators that describe the actual geometry of
the solute rather than in an average way, we believe our model to
be particularly well suited for high-resolution modeling.

Nonpolar Model

The nonpolar model adopted in this work differs from most other
implicit hydration free energy models in that the nonpolar com-
ponent �Gnp is subdivided into cavity and solute-solvent van der
Waals interaction terms:

�Gnp � �Gcav � �GvdW (28)

rather than estimated as a whole using a surface area model. This
choice is motivated by a recent survey of the solute-water van der

Waals interaction energy of proteins and protein-ligand complexes.50

In the survey it was found that on the fine grained energy scale
necessary to predict the high-resolution structure of proteins and
protein-ligand complexes, the correlation between �GvdW and the
solvent accessible surface area of the solute was poor. This decom-
position scheme has also been shown to be advantageous in the
prediction of experimental hydration free energies of small organic
molecules.11

The cavity component is described by a surface area model49,63–65:

�Gcav � �
i

�iAi (29)

where the summation runs over solute atoms, Ai is the van der
Waals surface area of atom i, and �i is the surface tension
parameter assigned to atom i.

The solute-solvent van der Waals free energy term is modeled
by the expression

�GvdW � �
i

�i

ai

�Bi � Rw�3 (30)

where �i is an adjustable dimensionless parameter on the order of
1 and

ai � �
16

3
��w	iw
iw

6 (31)

where �w � 0.33428 Å�3 is the number density of water at
standard conditions, and 
iw and 	iw are the OPLS force field66

Lennard-Jones interaction parameters for the interaction of solute
atom i with the oxygen atom of the TIP4P water model.67 If 
i and
	i are the OPLS Lennard-Jones parameters for atom i


iw � �
i
w (32)

	iw � �	i	w (33)

where 
w � 3.15365 Å, and 	w � 0.155 kcal/mol are the
Lennard-Jones parameters of the TIP4P water oxygen. In eq. (30)
Bi is the Born radius of atom i and Rw is a parameter correspond-
ing to the radius of a water molecule.

Equation (30) is motivated by the following arguments. The
free energy associated with turning on the solute-solvent van der
Waals interactions is well approximated by the average solute-
solvent van der Waals interaction energy UvdW

49,68,69:

�GvdW � UvdW � �
i

UvdW�i� (34)

where UvdW(i) is the van der Waals interaction energy of atom i
with the water solvent. We have shown that UvdW(i) can be
accurately estimated by integrating over the solvent region, the
attractive part of the solute-solvent Lennard-Jones interaction po-
tential of atom i assuming homogeneous solvent density �w out-
side the solute50:
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UvdW�i� � ��w �
Solvent

d3r
4	iw
iw

6

�r � ri�
6 (35)

By setting in analogy with eq. (20)

1

Ci
3 �

3

4� �
Solvent

d3r
1

�r � ri�
6 (36)

where Ci is an effective Born radius evaluated by means of the
function 1/r6 rather than the standard 1/r4 function, we obtain

UvdW�i� � �
16��w	iw
iw

6

3Ci
3 (37)

For a spherical geometry the 1/r6 effective Born radius Ci is equal
to the Born radius Bi. Equation (30) is then obtained by approx-
imating Ci in eq. (37) by the Born radius. The Born radius is then
further augmented by the radius of a water molecule, Rw, to take
into account the fact that, for the purpose of evaluating the van der
Waals solute-solvent energy, the distance of closest approach
between the atomic centers of atom i and of a water molecule is
Ri 
 Rw, where Ri is the van der Waals radius of atom i. Rw here
is set to 1.4 Å.

The nonpolar model proposed here has evolved from the non-
polar model proposed by Gallicchio et al.11 that was shown,
together with the SGB polar model,27 to predict with high accuracy
the experimental hydration free energies of a set of organic mol-
ecules. The present model differs from the model of Gallicchio et
al.11 with respect to the definition of surface area and with respect
to the dependence of UvdW(i) on the Born radius. In the nonpolar
model presented here and in ref. 11 the functional form of UvdW(i)
reflects the fact that the solute-solvent van der Waals interaction
energy of atom i decreases with the degree of burial of the atom as
measured by the Born radius. However, in the model of Gallicchio
et al.11 the dependence of UvdW(i) on the Born radius was chosen
on an ad hoc basis, whereas the functional form used here is
motivated by the physical arguments presented.

Numerical Implementation

This section describes the numerical implementation of the algo-
rithms described in the previous section to compute surface areas
and Born radii, which are the core ingredients of the AGBNP
model. The AGBNP model has been implemented within the
IMPACT70,71 molecular simulation program.

Volume and Surface Area

The self-volumes of hydrogen atoms are ignored. For the calcula-
tion of surface areas the radii of heavy atoms are set as described
in the section Atomic Radii for the Surface Area Calculation.

Atomic surface areas are computed using the Gaussian surface
model of Grant and Pickup60 described in the section Volume and

Surface Area Model. The derivatives with respect to atomic radii,
Ri, in eq. (7) are obtained in analytic form from eqs. (10–13)

�V12 · · · n
g

�Ri
�

2�

Ri
3 � 3

2�12 · · · n
� �ri � r12 · · · n

c �2�V12 · · · n
g (38)

where

r12 · · · n
c �

1

�12 · · · n
�
j�1

n

ciri (39)

is the coalescence center of the n Gaussians.
The search and calculation of intersection volumes is imple-

mented using the “depth-first” algorithm.72 First a neighbor list for
each atom i is constructed containing the atom indexes j 
 i that
satisfy the distance criterion rij � Ri 
 Rj 
 �R, where �R is a
distance offset chosen so that all of the intersections of non-
negligible volume in which atom i is participating are calculated.
We found that a value of �R � 0.5 Å gives converged surface
areas and stable derivatives of the cavity free energy �Gcav. For
each atom i the search starts with the two-body intersection vol-
ume, Vij1

, between atom i and its first neighbor. The contribution
of Vij1

to the self-volumes [eq. (3)] and surface areas [eq. (7)] of
atoms i and j1 is calculated. If Vij1

is smaller than a certain small
threshold value Vmin (here set to 0.01 Å3), the two-body intersec-
tion volume Vij2

between atom i and its second neighbor is
examined (the search ends if j1 is the only neighbor of atom i). If,
instead, Vij1

is larger than the threshold value the three-body
intersection volume Vij1j2

between atom i and its first two neigh-
bors is examined. The process described for Vij1

is then repeated
for Vij1j2

, leading to either the intersection volume of lower order
Vij2

(if j2 is the last neighbor), the intersection of same order Vij1j3

(if Vij1j2
is smaller than Vmin), or the intersection of higher order

Vij1j2j3
(if Vij1j2

is larger than Vmin). The search then continues in
this fashion until all intersection volumes between atom i and its
neighbors are examined. The process is then started for the next
atom until all of the atoms have been processed. During this
process the contributions of each intersection volume Vi1

. . . in to
the self-volumes and surface areas of atoms i1

. . . in are collected.
For completely or nearly completely buried atoms the Gaussian

overlap approximation sometimes leads to small negative surface
areas. The occurrence of negative surface areas is prevented by
multiplying the raw surface areas from eq. (7) by the switching
function

fa� Ai� � � Ai
2

a2 � Ai
2 Ai � 0

0 Ai � 0
(40)

The function fa( Ai) goes smoothly from 1 for large surface areas
to zero for small or negative surface areas. The switch occurs
around Ai � a. The switching function has negligible effect for
exposed atoms with surface areas much larger than a. We set a �
5 Å2.

Appendix A describes the implementation of the calculation of
the derivatives of the cavity free energy �Gcav � ¥i �i fa( Ai) Ai
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with respect to atomic positions, a necessary step to obtain the
forces due to the cavity free energy.

Born Radii

The inverse Born radii 
i are obtained from eqs. (24) and (27).
First the self-volumes V�i are calculated as described in the section
Volume and Surface Area Model. The self-volume scaling actors
si are then obtained by dividing the self-volumes by the atomic
volumes Vi [eq. (5)]. The pairwise descreening sum [the sum at the
right hand side of eq. (24)] runs over heavy atoms only, that is,
hydrogen atoms do not participate in descreening other atoms. The
Born radii of hydrogen atoms are obtained from eq. (24) in which
sji is replaced by sj (the two-body overlap between a heavy atom
j and a hydrogen atom i is set to zero).

For each heavy atom pair ji the descreening function Qji is
evaluated (see Appendix B), and sji is then computed from eq. (27)
by adding Vij

g / 2Vj to sj. The quantity sjiQji/4� is then subtracted
from the current value of 
i starting from the isolated initial value
1/Ri. When using nonbonded distance cutoffs, interacting atom
pairs are stored in a neighbor list that lists atom pairs ji with j 

i. In this case for each heavy atom pair ji both sjiQji/4� and
sijQij/4� are evaluated and subtracted from 
i and 
j, respec-
tively. For pairs in which j is a heavy atom and i a hydrogen atom
only the quantity sjQji/4� is evaluated and subtracted from the
inverse Born radius, 
i, of the hydrogen atom. For maximum
efficiency, the two-body overlap volumes Vij

g , used to calculate sji

for each ji interacting atom pair are retrieved from a memory cache
filled during the computation of the self-volumes, rather than
recalculated. The amount of memory required for storing the
two-body volumes cache scales as NH � Nb where NH is the
number of heavy atoms and Nb the average number of overlapping
neighbors (as defined in the last section) for each atom. Because
Nb is a small number (10–20 typically) memory consumption for
the two-body volume cache is normally not problematic.

In some instances, such as when the input conformation is from an
unrefined X-ray structure with unphysical atomic overlaps, the pair-
wise descreening scheme produces unreasonably large or, worse,
negative Born radii. The occurrence of unreasonably large or negative
Born radii is prevented by filtering the inverse Born radii 
i, given by
the pairwise descreening formula [eq. (24)], by the function

Bi
�1 � fb�
i� � � �b2 � 
i

2 
i � 0
b 
i � 0 (41)

where b�1 � 50 Å. The filter function eq. (41) is designed to prevent
the occurrence of negative Born radii or Born radii larger than 50 Å.
The goal of the filter function is simply to increase the robustness of
the algorithm in limiting cases. The filter function has negligible effect
for the most commonly observed Born radii smaller than 20 Å.

Appendixes C and D describe the calculation of the derivatives
with respect to atomic positions of the generalized Born polar
hydration free energy term �GGB [eqs. (18) and (19)] and of the
van der Waals component �GvdW [eq. (30)] of the nonpolar
hydration free energy. The derivatives of both free energy terms
are complicated by the dependence of the Born radii on the solute
conformation.

Selection of Parameters

The parameters of the AGBNP model are the atomic radii used in
the surface area calculation, the atomic radii that define the solute
volume for the purpose of calculating Born radii, and the surface
tension and van der Waals parameters �i and �i in eqs. (29) and
(30). The atomic radii for the calculation of the Born radii are
generally set from the corresponding OPLS Lennard-Jones 
 pa-
rameters adjusted in order to better reproduce the Free Energy
Perturbation (FEP) explicit solvent electrostatic charging free en-
ergies for a set of small molecules.28 The atomic radii used in the
surface area calculation are obtained by increasing by 0.5 Å the
atomic radii for the Born radii calculation (see the section Atomic
Radii for the Surface Area). The surface tension parameters are set
to 117 cal/mol/Å2, obtained from fitting eq. (29) to the hydration
free energies of alkane cavities49 using the present definition of the
solute surface area. This value is intermediate between the values
of the surface tension of alkane cavities measured using the mo-
lecular surface area (� � 139 cal/mol/Å2)73 or the accessible
surface area (� � 72 cal/mol/Å2).49 The values of the � parameters
have been set so as to reproduce as best as possible, using eq. (30),
the solute-solvent van der Waals energies of individual atoms of a
large set of protein conformations, peptides, and small molecules
obtained from a continuum solvent model50 designed to reproduce
the results of explicit solvent simulations. Table 1 lists the atomic
radii and nonpolar parameters of the model.

Atomic Radii for the Born Radii Calculation

The atomic radii used in the calculation of the Born radii are
generally set from the Lennard-Jones OPLS 
 parameters:

Ri �

i

2
(42)

The atomic radii of some atomic types were adjusted to better
reproduce the charging free energies of a set of small molecules
calculated in explicit solvent using the FEP method.28 Table 1 lists
the OPLS and atomic radii for the atom types found in proteins and
the small molecule database. When using van der Waals radii to
describe the solute volume, small crevices between the atomic
spheres not occupied by water molecules are effectively consid-
ered as high-dielectric solvent regions.12,26 This leads to underes-
timation of the Born radii, particularly for buried atoms. We are
currently exploring methods to overcome this limitation.

Figure 4 illustrates the accuracy of the inverse Born radii, 1/Bi,
obtained by the AGB pairwise descreening method described in
the section GB Model [eq. (24)] by comparing them to accurate
estimates obtained by evaluating the integral in eq. (21) numeri-
cally on a grid (see Appendix E for details of the grid integration
method). The inverse Born radii are proportional to the self-
energies [see eq. (19)]. Figure 4a compares the analytical and
numerical inverse Born radii of a set of small molecules and a
diverse set of conformations of peptides and proteins. Figure 4b
compares the differences, �Bi

�1 � Bi
�1 (Unbound) � Bi

�1

(Bound), of the inverse Born radii between the unbound and bound
forms of a set of ligands. The agreement between the analytical

AGBNP: An Analytic Implicit Solvent Model 487



and numerical inverse Born radii is excellent. The comparison of
the inverse Born radii differences shown in Figure 4b is a very
stringent test of the method; it shows that the analytical Born radii
respond correctly to conformational changes such as those occur-
ring in binding/unbinding transitions. It should be stressed that the
agreement between the numerical and analytical Born radii shown
in Figure 4 has been obtained without resorting to parameter fitting.
No adjustable parameters are used in the analytical formulation used
to calculate the Born radii. All the parameters in the pairwise de-
screening function [eq. (24)] are calculated directly from the solute
geometry rather than by fitting parameters to reflect the average
geometric properties of particular functional types. It is therefore
expected that the same level of accuracy as that shown in Figure 4 can
be achieved for molecules with any combination of functional groups.

Atomic Radii for the Surface Area Calculation

The Gaussian-based model of Grant and Pickup60 is designed for
van der Waals surface areas. van der Waals surface areas, how-
ever, are very insensitive to molecular geometry and consequently
are not useful for modeling the nonpolar solvation free energy. We
have observed for example only minor changes of the van der
Waals surface areas for folding proteins and for binding ligands to

protein receptors. This is due to the fact that the distance between
two adjacent nonbonded atoms tends to be near the minimum of
the Lennard-Jones interaction potential. At that distance the van
der Waals surfaces of the two atoms are not touching.

Although solvent accessible surface areas (SASAs), obtained by
setting the atomic radii to the van der Waals radii augmented by the
radius of a water molecule (typically 1.4 Å), are optimally suited for
nonpolar free energy estimators, their calculation is problematic in the
context of the Gaussian model of Grant and Pickup. This is due to the
fact that larger atomic radii produce many more intersections and
cause large atomic overlaps that are beyond the range of applicability
of the Gaussian overlap approximation to the volume of spherical
intersections. Weiser et al.72 have reported that a parameterized model
based on the method of Grant and Pickup can be used to calculate
accessible surface areas, albeit at a computational cost about 100
times larger than calculating the van der Waals surface areas. We
found, however, that the surface area obtained by augmenting the van
der Waals radii by only 0.5 Å, a fraction of the radius of a water
molecule, offers a good compromise between computational com-
plexity and sensitivity to molecular conformation. We are currently
exploring the possibility of extending the method of Grant and Pick-
up60 for the calculation of molecular surface areas.

Table 1. List of the van der Waals Radii, R, Used in the Computation of the Born Radii, and the
Nonpolar Parameters for a Series of Atom Types.

Atom type OPLS 
/2a Ra �b �

sp2 Carbon (carbonyl) 1.875 1.875 117 0.80
sp2 Carbon (alkene) 1.775 1.775 117 0.80
sp2 Carbon (aromatic) 1.775 1.650 117 0.80
sp3 Carbon 1.750 1.650 117 0.70
sp Carbon (alkyne) 1.750 1.750 117 0.75
sp Carbon (nitrile) 1.650 1.750 117 1.15
Aliphatic hydrogen 1.250 1.250 0c 0.80
Aromatic hydrogen 1.210 1.250 0c 0.80
sp2 Nitrogen 1.625 1.525 117 0.75
sp3 Nitrogen 1.650 1.650 117 0.75
Nitrogen (nitro group) 1.625 1.625 117 0.75
Oxygen (nitro group) 1.480 1.480 117 0.75
sp Nitrogen 1.600 1.700 117 0.75
sp3 Oxygen (alcohol) 1.560 1.480 117 0.70
sp3 Oxygen (ether) 1.500 1.500 117 0.80
sp2 Oxygen (carbonyl) 1.480 1.480 117 0.80
Phosphorus (phosphate) 1.870 1.870 117 0.85
Sulfur 1.800 1.800 117 0.75
sp3 Nitrogen (ammonium) 1.625 1.625 117 0.75
sp2 Oxygen (carboxyl) 1.480 1.480 117 0.80
Hydrogen on heteroatoms 1.210 1.210 0c 0d

The nonpolar parameters for atom types not listed are set as � � 117 cal/mol/Å2 and � � 1. The van
der Waals radii of the atom types not listed are set to 
/2 where 
 is the OPLS Lennard-Jones 

parameter. The values of the atomic radii used for the surface area calculation are those listed plus
0.5 Å, except for the radii of hydrogen atoms that are set to zero.
aIn Å.
bIn cal/mol/Å2.
cHydrogen atoms do not contribute to the cavity hydration free energy.
dHydrogen atoms bonded to heteroatoms do not contribute to the van der Waals hydration free energy
because their OPLS Lennard-Jones 	 parameter is zero.
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In our implementation of the Gaussian solute volume and
atomic surface area model,60 the atomic radii are those listed in
Table 1 augmented by 0.5 Å; hydrogen atoms are assigned zero
radii. Figure 5a illustrates the accuracy of the surface areas
obtained using the Gaussian model for a set of organic mole-
cules11 and proteins by comparing them to exact numerical
surface areas.74 The agreement between analytical and numer-

ical surface areas is very good. As shown in Figure 5b, the
agreement between the analytical and numerical estimates of
the changes upon binding of the atomic surface areas of several
ligands is also very good. This shows that the analytical surface
area model is able to reproduce equally well absolute atomic
surface areas and variations of surface areas due to conforma-
tional changes.

Figure 4. (a) Comparison between the numerical and AGBNP estimates of the inverse Born radii for the
atoms of a set of 200 small molecules,11 seven low-energy conformations of the Ace-GEWTYDDAT-
KTFTVTE-Nme octadecapeptide, and a set of 30 native and misfolded protein structures from the 1lz1
(116 residues), 1ctf (68 residues), and 2cro (65 residues) decoy sets78,79 (43,135 data points). (b)
Comparison between the numerical and AGBNP estimates of the inverse Born radius changes upon
unbinding of the atoms of the ligands from the following ligand-protein complexes (PDB id’s): 1bkm,
2clr, 1dwc, 1aq7, a HEPT analog (H01) complexed with HIV reverse transcriptase (1rt1) from ref. 80,
2bpx, 1hpv, 1htg, and 1hvj.
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Performance

Table 2 shows the results of a performance test on representative
systems using the AGBNP method described in the previous
sections. The test consists of 50 steps of steepest descent energy
minimization, followed by 250 steps of constant temperature mo-
lecular dynamics, and 250 steps of constant energy molecular

dynamics with a 1 fs time step. The same test was performed in
vacuum and in implicit solvent with AGBNP. AGBNP is found to
be from 3.84 to 5 times slower than the corresponding calculation
in vacuum. Most of the extra computation time is due to the
calculation of Born radii, pair GB interaction energies, and, to a
lesser extent, atomic surface areas. The speed of AGBNP relative
to vacuum improves as the system size increases due to the fact

Figure 5. (a) Comparison between the numerical (GEPOL) and AGBNP estimates of the accessible
surface areas (Rw � 0.5 Å) for the heavy atoms of a set of 200 small molecules,11 seven low-energy
conformations of the Ace-GEWTYDDATKTFTVTE-Nme octadecapeptide, and a set of 30 native and
misfolded protein structures from the 1lz1 (116 residues), 1ctf (68 residues), and 2cro (65 residues) decoy
sets78,79 (20,115 data points). (b) Comparison between the numerical (GEPOL) and AGBNP estimates of
the accessible surface area changes (Rw � 0.5 Å) of unbinding of the heavy atoms of the ligands from
the following ligand-protein complexes (PDB id’s): 1bkm, 2clr, 1dwc, 1aq7, a HEPT analog (H01)
complexed with HIV reverse transcriptase (1rt1) from ref. 80, 2bpx, 1hpv, 1htg, and 1hvj.
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that the cost of calculating surface areas decreases relative to the
cost of calculating nonbonded interaction energies.

When using a nonbonded distance cutoff the memory require-
ments remain modest even for the largest system tested (26.9 Mb
for 2clr, 5983 atoms). The quality of energy conservation [as
measured by the log(�E) and R indicators75] is comparable to
vacuum except when a nonbonded distance cutoff is used, in which
case energy conservation with AGBNP is found to be consistently
superior compared to vacuum. This is due to effective charge-
charge interactions at the cutoff distance, which are still significant
in vacuum but become negligibly small in implicit solvent due to
dielectric screening. This suggests that the application of a non-
bonded distance cutoff, although questionable in vacuum, is ap-
propriate in combination with GB.32 The combined results for
speed and accuracy, as reported in Table 2 and Figure 4, of
AGBNP are among the best of the GB implicit solvent models to
date.7,12,27,31,52

Molecular Dynamics of Proteins

To test the stability of native protein conformations with AGBNP,
we have conducted 2 ns constant temperature (T � 300 K)
molecular dynamics simulations on three small proteins: the C-
terminal domain of the L7/L12 50 S ribosomal protein (1ctf),
�-1-H thionin (1gpt), and 434 Cro protein (2cro). Starting from
their experimental conformation, we have monitored (see Figure 6)
the root mean square deviation (RMSD) from the experimental
structure as a function of time. In all these cases the native
structure remains stable; the measured RMSD deviations are com-
parable to the experimental resolution. Visual inspection of the
final structure reveals that all native secondary and tertiary struc-
tures are preserved after 2 ns of molecular dynamics. Molecular

dynamics trajectories obtained in vacuum show instead rapid di-
vergence from the native protein conformations.

Protein Loops and Protein-Ligand Complex
Decoys

Protein decoys5 have been extensively used to test scoring func-
tions aimed at protein folding and protein homology modeling. To
demonstrate the applicability of the AGBNP model to high-reso-
lution structure prediction applications, we tested the OPLS/AG-
BNP model on high quality decoy sets of protein loops and
protein-ligand binding complexes. Specifically, we have tested the
ability of the OPLS/AGBNP model to recognize the native con-
formation among a set of non-native conformations (decoys).
Decoy conformations are scored based on their OPLS/AGBNP
energy, and the quality of the energy model is tested by verifying
that the energy of the native conformation is one of the lowest in
the decoy set and that the decoy of lowest energy is structurally
similar to the native.

The protein loop decoy sets we have examined have been
selected from a large database of loop decoy sets generated by
Jacobson et al.76 Jacobson et al. have generated the loop decoy
database using the PLOP program; PLOP generates loop confor-
mations by exhaustive grid enumeration of the loop backbone
torsional angles. Loop conformations with steric clashes are re-
jected. Loop sidechain conformational predictions have also been
performed using the PLOP program.76 We have extracted from the
database of Jacobson et al. the decoy sets corresponding to loops
between 7 and 12 residues in length in single-chain monomeric
proteins of 150 residues or less, free of large prosthetic groups.
This selection resulted in the 60 loop decoy sets listed in Table 3,
for a total of approximately 43,000 loop conformations. These loop

Table 2. Performance Test Results Using the AGBNP Model.

System N Cutoffb Timec Cache sized log(�E)e Re

1gb1(41–56)a 256 5.00 � Vac. 0.3 Mb �2.50 0.046
1gpt 711 4.88 � Vac. 2.3 Mb �2.98 0.006
1lz1 1803 4.73 � Vac. 13.2 Mb �2.25 0.043
1lz1 1803 13.0 4.66 � Vac. 6.5 Mb �3.01(�1.83) 0.074(1.080)
2clr 5983 13.0 3.84 � Vac. 26.9 Mb �3.51(�2.20) 0.029(0.402)

The test consists of 50 steps of steepest descent energy minimization, followed by 250 steps of constant temperature
molecular dynamics, and 250 steps of constant energy molecular dynamics with a 1 fs time step. N is the number of
atoms and “Cutoff” is the residue-based nonbonded cutoff radius (when not indicated all nonbonded interactions are
calculated). “Cache size” is the size of the memory cache used to store intermediate values for the calculation of the
gradients (see Appendix C). The parameters log(�E) and R measure energy conservation75 during the constant energy
section of the trajectory. They are defined as log(�E) � (1/M) ¥k �(Ek � E0)/E0�, where M is the number of MD steps
and Ek is the total energy at step k, and R2 � ��2E�/��2KE� is the ratio of the variance of the total energy and the
variance of the kinetic energy. Energy is considered as being conserved to an acceptable degree when log(�E) is around
�2.5 or less and R is around 0.05 or less.
aIn parentheses is the chain segment included in the calculation.
bNonbonded cutoff distance in Å if applicable.
cCPU time as a multiple of the CPU time for the same system in vacuum.
dMb � 106 bytes.
eThe corresponding value in vacuum is indicated in parentheses.
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decoy sets contain a large variety of high quality decoys, including
low energy conformations structurally very different from the native
as well as near-native conformations. Each decoy loop conformation
was energy minimized using the OPLS/AGBNP energy function and
the energy of each loop conformation recorded.

In Table 3 we report the RMSD from the native loop conformation
of the decoy loop conformation that scores the best in terms of the
OPLS/AGBNP energy function (lowest energy decoy, LED). The
OPLS/AGBNP energy function is very successful in discriminating
near-native conformations from non-native ones. As shown in Figure

7, in over 90% of the cases the RMSD from the native of the lowest
energy decoy is less than 2 Å. In these cases we find that the loop
backbone conformation and the side-chain conformations are indeed
in good agreement with the native. In five cases the C� RMSD from
the native of the best energy decoy is larger than 2 Å. In one case
[1rro(90–96)] the deviation of the predicted conformation from the
native is probably caused by the presence of calcium ions in the
crystal structure, which are not included in the model; in two more
cases [1aba(56–66) and 5fx2(59–68)] the loop in the crystal structure
is in close proximity to a ligand not included in the model.

Figure 6. Root mean square deviations (RMSD) from the native conformation of the C� atoms of the
proteins (a) 1ctf, (b) 1gpt, (c) 2cro, during constant temperature molecular dynamics trajectories using the
AGBNP implicit solvent model.
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The protein-ligand decoy complexes, listed in Table 4, were con-
structed starting from their X-ray experimental structures. The pro-
gram GLIDE71 was then used to dock several low energy conforma-
tions of the ligands on various candidate binding sites on their
corresponding receptor protein, including the native binding site. The
complexes were then energy minimized using the OPLS/AGBNP
energy function, and the binding energy of each complex, defined as
the difference between the energy of the complex and the sum of the
energies of the receptor and free ligand, was computed. The results
were analyzed in terms of the RMSD from the native ligand coordi-
nates of the ligand in the protein-ligand complex with lowest pre-
dicted binding energy (LED), and the rank of the native complex with
respect to the OPLS/AGBNP binding energy. The results are shown
in Table 4. The OPLS/AGBNP energy is very successful in both

predicting the native complex conformation and in giving the native
complex a high rank compared to the decoy complexes. In all cases
the complex with lowest predicted binding energy is structurally very
similar to the native, and the native complexes are consistently ranked
among the best 5%. This indicates that the OPLS/AGBNP energy
function is very successful in determining the location of the native
receptor site and the ligand binding pose among a large number of
alternative plausible candidates.

Conclusions

We have developed an implicit solvent effective potential (AG-
BNP) that is suitable for molecular dynamics simulations and

Table 3. Results of Scoring the Protein Loop Decoy Sets Using the OPLS/AGBNP Force Field.

Loop seta Nres Ndecoys RMSDmax
b RMSDLED

b,c Loop seta Nres Ndecoys RMSDmax
b RMSDLED

b,c

1a62(89–95) 7 519 6.20 0.48
1aac(69–75) 7 514 1.91 0.17
1g3p(127–133) 7 510 2.97 1.51
1lif(64–70) 7 418 3.65 0.15
1lit(68–74) 7 514 4.53 1.29
1opd(53–59) 7 517 3.77 0.62
1paz(36–42) 7 530 2.03 0.07
1plc(87–93) 7 326 3.90 0.13
1pmy(25–31) 7 485 4.63 0.14
1ptf(65–71) 7 512 6.91 0.11
1rro(90–96) 7 508 3.50 2.37
1vcc(34–40) 7 517 3.41 0.18
2a0b(737–743) 7 537 4.24 0.23
2sns(134–140) 7 321 9.03 0.32
4fgf(58–64) 7 492 2.30 0.31
5fx2(27–33) 7 501 7.24 0.19
7rsa(20–26) 7 493 5.32 0.19

135l(84–91) 8 574 6.00 0.16
1aac(48–55) 8 611 1.99 0.43
1aba(7–14) 8 572 5.88 0.00
1alc(34–41) 8 407 5.82 0.16
1cbn(18–25) 8 524 3.48 0.00
1cbs(55–62) 8 573 6.30 0.39
1lit(82–89) 8 579 3.70 0.22
1msi(26–33) 8 570 2.84 0.13
1opd(8–15) 8 575 4.12 0.73
1plc(6–13) 8 572 7.01 2.79
1plc(32–39) 8 580 2.51 0.19
1poa(71–78) 8 574 4.93 1.24
1rro(18–25) 8 581 6.85 0.20
2sns(17–24) 8 408 3.42 1.21
5icb(15–22) 8 576 2.81 1.78
7rsa(64–71) 8 577 3.93 0.17

For each set we report the number of residues in the loop, Nres, the number of decoy conformations in the set, Ndecoys,
the largest C� root mean square deviation (RMSD) from the native conformation in the set, RMSDmax, and the C�

RMSD from the native of the loop conformation with lowest OPLS/AGBNP energy, RMSDLED. The RMSD is
calculated for the loop C� atoms after superimposing the protein frames.
aPDB id of protein and loop residues indicated in parentheses.
bIn Å.
cRMSD from the native of the lowest energy decoy (LED).

1aac(58–66) 9 650 8.60 0.67
1aba(36–44) 9 644 7.43 0.38
1aba(69–77) 9 628 10.58 0.40
1lif(73–81) 9 646 9.46 0.45
1noa(9–17) 9 651 4.34 0.30
1noa(99–107) 9 646 5.87 2.02
1noa(76–84) 9 642 10.46 0.50
1onc(70–78) 9 566 4.67 0.39
1ptf(10–18) 9 630 6.30 0.08
1rro(70–78) 9 648 4.14 0.23
3chy(57–65) 9 269 7.49 0.00
5fx2(8–16) 9 441 6.96 1.74

1knt(35–44) 10 967 4.72 0.25
1plc(42–51) 10 924 6.98 0.00
1rie(137–146) 10 500 5.70 0.05
2phy(58–67) 10 926 7.36 0.13
3lzt(15–24) 10 683 8.18 0.19
5fx2(59–68) 10 904 7.63 2.54
5pti(23–32) 10 502 4.39 0.55
7rsa(33–42) 10 925 5.11 0.19
7rsa(87–96) 10 925 8.17 0.25

1aba(56–66) 11 1477 8.79 7.09
1msi(8–18) 11 967 14.10 0.16
1rie(174–184) 11 1060 4.90 0.00
5pti(7–17) 11 1382 3.78 0.09

7rsa(13–24) 12 1152 9.31 0.17
5nul(54–65) 12 1102 10.12 0.88
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high-resolution modeling. It is based on a novel implementation of
the pairwise descreening GB model for the electrostatic compo-
nent and a new nonpolar hydration free energy estimator. AGBNP
has been designed with several goals in mind. The model has been
designed to be applicable to a wide range of molecules, from small
molecules to large biological macromolecules, and to a wide range
of functional group topologies and types (hydrophobic, polar, and
ionic). The model has also been designed to be applicable to study
absolute hydration free energies as well as conformational equi-
libria. Both large conformational changes and small conforma-
tional rearrangements can be modeled. AGBNP is fully analytical

with first derivatives and is computationally efficient, which facil-
itates incorporation in molecular mechanics simulation packages.
The ability to use AGBNP in conjunction with advanced sampling
techniques can extend further the predictive power of the model.

These properties make the AGBNP model particularly suitable
for studying ligand binding and for high-resolution protein mod-
eling. Ligand binding studies often involve the study of large
numbers of ligand candidates with a large variety of topologies and
combinations of functional groups. The correct representation of
the geometrical parameters of these ligands, which ultimately
determine their thermodynamic properties, is therefore crucial.

Figure 7. Distribution of the C� atoms’ RMSD from the native of the lowest OPLS/AGBNP energy decoy (RMSDLED from Table 3).

Table 4. Results of Scoring the Protein-Ligand Complex Sets
Using the OPLS/AGBNP Force Field.

Complex set nat Ndecoys RMSDmax
a RMSDLED

a,b Rank of native

1aha 15 350 30.39 0.09 6
1bkm 80 340 30.17 2.37 14
1dwc 84 400 36.37 1.01 9
1odw 71 340 30.27 1.62 3

For each set we report the number of atoms in the ligand, nat, the number of decoy conformations in
the set, Ndecoys, the largest root mean square deviation (RMSD) of the ligand from the native
conformation in the set, RMSDmax, the RMSD from the native of the ligand conformation and lowest
OPLS/AGBNP binding energy, RMSDLED, and the rank of the native conformation with respect to
the OPLS/AGBNP binding energy.
aIn Å.
bRMSD from the native of the lowest energy decoy (LED).
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The sensitivity of the AGBNP model to conformational changes
makes it well suited for homology modeling of protein loops and
the prediction of protein-ligand binding modes.

Two key developments set the AGBNP model apart from
related implicit solvent models based on the pairwise descreening
GB model. The first is the novel parameter-free and conformational-
dependent algorithm used to estimate the pairwise descreening scaling
coefficients in the evaluation of Born radii. The same algorithm is also
used to evaluate atomic surface areas. We show that these methods
provide good approximations to the Born radii and atomic surface
areas calculated using accurate, but much more expensive, numerical
techniques. We have shown that the model is able to reproduce
accurately the effect of conformational changes on Born radii and
surface areas. This is achieved without the use of adjustable param-
eters, making the model more easily transferable to a large variety of
molecules without the need of extra parameterization steps.

The second key development is the introduction of a nonpolar
estimator that does not depend exclusively on the solute surface
area. This development has been motivated by stud-
ies11,49,50,53,54,56 that show that surface area models, although
valid on a coarse-grained energy scale, do not properly capture
nonpolar hydration free energy differences on the fine-grained
energy scale necessary for high-resolution modeling. We have
developed a nonpolar hydration free energy estimator inspired by
the decomposition of the nonpolar hydration free energy into a
cavity term, proportional to surface area, and an attractive disper-
sion energy term, which reproduces the continuum solvent solute-
solvent van der Waals interaction energy using a functional form
based on the Born radius of each atom. The nonpolar model
depends linearly on adjustable parameters that measure the effec-
tive surface tension and effective strength of solute-solvent van der
Waals interactions. In this article we have set these parameters to
reference values from literature sources.

We show that the native conformations of a series of small
proteins are stable during long molecular dynamics trajectories
conducted using the AGBNP implicit solvent model. The applica-
bility of the AGBNP implicit solvent model to high resolution
protein modeling and binding is demonstrated by showing that the
AGBNP implicit solvent model in conjunction with the OPLS
force field is able to discriminate the native conformation among a
large number of non-native conformations of protein loops and
protein-ligand complexes. In a following article77 we analyze the
thermodynamic stability of 
-hairpin and �-helical peptides with
the AGBNP effective potential.
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Appendix A: Calculation of the Gradient of
�Gcav

Taking into account the switching function in eq. (40), the cavity
free energy is given by �Gcav � ¥j �jfa( Aj) Aj, where the surface

areas, Aj, of heavy atoms are given by eq. (7). The surface areas of
hydrogen atoms are set to zero. The derivative of �Gcav with
respect to the position ri of a nonhydrogen atom is

��Gcav

�ri
� �

j

�j� fa�Aj� � Ajf�a�Aj�	
�Aj

�ri
(43)

where f�a( Aj) is the first derivative of the switching function. By
defining

�̃j � �j� fa� Aj� � Ajf�a� Aj�	 (44)

eq. (43) is written in a form formally equivalent to what would be
obtained in the absence of the switching function

��Gcav

�ri
� �

j

�̃j

�Aj

�ri
(45)

By inserting eq. (7) in eq. (45) we obtain

��Gcav

�ri
� ����Gcav

�ri
�

2�body

� ���Gcav

�ri
�

3�body

� · · · (46)

where

���Gcav

�ri
�

2�body

� �
j

��̃i

�

�Ri
� �̃j

�

�Rj
� �Vij

g

�ri
(47)

���Gcav

�ri
�

3�body

� �
j�k

��̃i

�

�Ri
� �̃j

�

�Rj
� �̃k

�

�Rk
� �Vijk

g

�ri
(48)

and similarly for intersections of higher order.
The derivative of the Gaussian overlap volume, V12

. . . n
g , of n

atoms with respect to the position, ri, of one of the atoms is, from
eq. (10)

�V12 · · · n
g

�ri
� �2ci�ri � r12 · · · n

c �V12 · · · n
g (49)

where ci is the Gaussian exponent coefficient of atom i and the
coalescence center r12

. . . n
c is defined by eq. (39).

The second derivatives of the Gaussian overlap volumes that
appear in eqs. (47) and (48) have the form

�

�Rj

�V12 · · · n
g

�ri
�

2�

Rj
3 �	2��ij �

ci

�12 · · · n
��rj � r12 · · · n

c �
V12 · · · n
g

� 	 3

2�12 · · · n
� �rj � r12 · · · n

c �2
 �V12 · · · n
g

�ri
� (50)

where �V12
. . . n

g /�ri is given by eq. (49).
It should be noted that, because the modified surface tension

parameters �̃i depend on the surface area [eq. (44)], the derivatives
of the cavity free energy can be collected only after the atomic
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surface areas are known. It is therefore required to loop twice over
the intersection volumes, as described in the section Volume and
Surface Area, once to collect surface areas and again to collect the
gradients of the cavity free energy.

Appendix B: Derivation of the Pair Descreening
Function

In reference to Figure 2, the cosine of the angle 
ji subtended by
the portion of the surface of atom i inside atom j is given by

cos 
ji �
Ri

2 � Rj
2 � rij

2

2rijRi
(51)

where Ri and Rj are the radii of atoms i and j, respectively, and rij

is the distance between the two atoms.
To calculate the integral Qji of the 1/r4 function centered on atom

i over the crescent moon-shaped portion of atom j not overlapping
with atom i [eq. (23)], four possible cases are identified29:

1. rij
2 � (Ri 
 Rj)2

In this case the spheres of atoms i and j do not overlap and we
express Qji in spherical polar coordinates

Qji � 2� �
rij�Rj

rij
Rj

drr2
1

r4 �
cos 
ji�r�

1

d�cos �� (52)

where cos 
ji(r) is given by eq. (51) with Ri replaced by r

cos 
ji�r� �
r2 � Rj

2 � rij
2

2rijr
(53)

After performing the integral in eq. (52) we obtain

Qji � 2�	 Rj

rij
2 � Rj

2 �
1

2rij
log

rij � Rj

rij � Rj

 (54)

2. (Ri 
 Rj)
2 
 rij

2 � (Ri � Rj)
2

In this case the two spheres overlap but neither one is totally
engulfed inside the other. Qji is given by eq. (52) in which the
lower limit of integration for the radial integral is Ri rather than
rij � Rj. The result of the integration is

Qji � 2�	� 1

Ri
�

1

rij � Rj
� �

rij
2 � Rj

2

4rij
� 1

Ri
2 �

1

�rij � Rj�
2�

�
1

2rij
log

rij � Rj

Ri

 (55)

3. rij
2 � (Ri � Rj)

2 and Rj � Ri

In this case sphere i is totally engulfed by sphere j. Qji is
obtained by the integral of 1/r4 centered on i over a spherical

shell surrounding sphere i of inner radius Ri and outer radius
Rj � rij, plus the value of Qji from eq. (55) when Ri � Rj �
rij. The result is

Qji � 2�	 2

Ri
�

Rj

rij
2 � Rj

2 �
1

2rij
log

rij � Rj

Rj � rij

 (56)

4. rij
2 � (Ri � Rj)

2 and Rj � Ri

In this case sphere j is totally engulfed by sphere i therefore

Qji � 0 (57)

The derivative of Qji with respect to the interatomic distance rij

is:

1. rij
2 � (Ri 
 Rj)

2

�Qji

�rij
� 2�	 Rj

rij�rij
2 � Rj

2� �1 �
2rij

2

rij
2 � Rj

2� �
1

2rij
2 log

rij � Rj

rij � Rj



(58)

2. (Ri 
 Rj)
2 
 rij

2 � (Ri � Rj)
2

�Qji

�rij
� 2�	1

2 �1 �
rij

2 � Rj
2

2rij
2 �� 1

�rij � Rj�
2 �

1

Ri
2�

�
1

2rij
2 log

rij � Rj

Ri

 (59)

3. rij
2 � (Ri � Rj)

2 and Rj � Ri

�Qji

�rij
� 2�	 Rj

rij�rij
2 � Rj

2� �1 �
2rij

2

rij
2 � Rj

2� �
1

2rij
2 log

rij � Rj

Rj � rij



(60)

4. rij
2 � (Ri � Rj)

2 and Rj � Ri

�Qji

�rij
� 0 (61)

The derivatives of Qji with respect to ri and rj are

�Qji

�ri
� �

�Qji

�rj
�

rj � ri

rij

�Qji

�rij
(62)

Appendix C: Calculation of the Gradient of
�GvdW

From eqs. (30) and (41) we obtain

��GvdW

�ri
� �

j

3�jBj
2

�Bj � Rw�4 f�b�
j�
�
j

�ri
(63)
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where 
j is the inverse Born radius returned by the pair descreen-
ing formula (24), and f�b(
j) is the first derivative of the filter
function.

A change in position of atom i affects the Born radius of atom
j in two ways. Not only does the direct descreening of atom i on
atom j change, but also the descreening of the atoms around atom
i changes due to the change of their self-volumes. These effects are
born out in the expression for the gradient �
j/�ri of 
j obtained
from eq. (24):

�
j

�ri
� ��
j

�ri
�

s

� ��
j

�ri
�

Q

(64)

where

��
j

�ri
�

s

� �
1

4� �
k

skj

�Qkj

�ri
(65)

is the component of the gradient keeping the self-volume scaling
factors constant and

��
j

�ri
�

Q

� �
1

4� �
k

�skj

�ri
Qkj (66)

is the component corresponding to the changes of self-volumes.
The gradient of �GvdW is similarly decomposed

��GvdW

�ri
� ���GvdW

�ri
�

s

� ���GvdW

�ri
�

Q

(67)

Inserting eq. (65) into eq. (63) yields

���Gvdw

�ri
�

s

� �
1

4� �
j

	 3�iBi
2

�Bi � Rw�4 f�b�
i�sji

�Qji

�ri

�
3�jBj

2

�Bj � Rw�4 f�b�
j�sij

�Qij

�ri

 (68)

Inserting eq. (66) into eq. (63), using the fact that skj � V�k/Vk 

Vkj

g / 2Vk and setting

Wij �
3�jBj

2

�Bj � Rw�4 f�b�
j�
Qij

Vi
(69)

yields

���Gvdw

�ri
�

Q

� �
1

4� �
j

Wj

�V�j
�ri

�
1

4� �
j

1

2
�Wij � Wji�

�Vij
g

�ri
(70)

where

Wi � �
j

Wij (71)

By inserting eq. (3) in eq. (70) we finally obtain

���Gvdw

�ri
�

Q

�
1

4� �
j

1

2
�Wi � Wij � Wj � Wji�

�Vij
g

�ri

�
1

4� �
j�k

1

3
�Wi � Wj � Wk�

�Vijk
g

�ri

�
1

4� �
j�k�l

1

4
�Wi � Wj � Wk � Wl�

�Vijkl
g

�ri
� · · · (72)

Notice that if i is a hydrogen atom Qji � 0 in eq. (68) and
(��Gvdw/�ri)Q � 0 because Vijk

. . .g � 0. Also notice that the
calculation of Wi for each particle requires prior knowledge of the
Born radius of each atom of the system. Furthermore, the self-
volume scaling factors si must be known before eq. (68) is imple-
mented. The calculation of the gradient of �GvdW proceeds there-
fore in the following steps:

1. The self-volumes and volume scaling factors are computed as
described in the section Numerical Implementation.

2. The Born radii are computed using the pairwise descreening
formula, and the values Qij and �Qij/�rij are stored in a
memory cache.

3. The gradients (��GvdW/�ri)s are computed [eq. (68)].
4. The Wi values are computed [eqs. (69) and (71)] and the

gradients (��GvdW/�ri)Q are calculated [eq. (73)] by looping a
second time over the intersection volumes in order to compute
the gradients of the intersection volumes.

The use of a memory cache to store the values of Qij and its radial
derivatives avoids looping multiple times over atom pairs. The size
of the memory cache increases linearly with system size if a
distance cutoff is applied to the pair descreening function. For the
calculation of the Born radii we employ the same cutoff scheme
used for the nonbonded electrostatic (direct Coulomb and gener-
alized Born pair interactions) and Lennard-Jones interactions. Ta-
ble 2 lists the amount of memory used by the memory cache for a
representative sample of molecular systems.

Appendix D: Calculation of the Gradient of
�GGB

The derivation of the formulas for the gradient of �GGB [eq. (16)]
is similar to the derivation for �GvdW (Appendix C), with the
exception that an additional term is present due to the explicit
dependence of fij on the interatomic distance. We obtain

��GGB

�ri
� ���GGB

�ri
�

s,Q

� ���GGB

�ri
�

s

� ���GGB

�ri
�

Q

(73)

where
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���GGB

�ri
�

s,Q

� 2u	 �
j

qiqj

fij
3 	1 �

exp��rij
2 /4BiBj�

4 
rji (74)

���GGB

�ri
�

s

� �
u	

4� �
j

	�qi
2 � YiBi�

�Qji

�ri
� �qj

2 � YjBj�
�Qij

�ri

 (75)

and

���GGB

�ri
�

Q

�
u	

4� �
j

1

2
�Ui � Uij � Uj � Uji�

�Vij
g

�ri

�
1

4� �
j�k

1

3
�Ui � Uj � Uk�

�Vijk
g

�ri

�
1

4� �
j�k�l

1

4
�Ui � Uj � Uk � Ul�

�Vijkl
g

�ri
� · · · (76)

where

Yi � �
j

qiqjexp��rij
2 /4BiBj�

fij
3 �rij

2

4
� BiBj� (77)

Uij � �qj
2 � YjBj� f�b�
j�

Qij

Vi
(78)

and

Ui � �
j

Uij (79)

The algorithm for the calculation of the gradient of �GGB is
similar to the one presented for �GvdW (Appendix C); the same
memory cache used in the calculation of the gradient of �GvdW is
used.

Appendix E: Numerical Calculation of Born
Radii

By expressing eq. (21) in spherical polar coordinates centered on
ri we obtain


i �
1

Ri
�

1

4� �
�i

d�d�cos ��dr
1

r2 (80)

The integral in eq. (80) is calculated on a grid of points. Because
the points nearest to atom i contribute the most to the integral, the
density of radial points should be chosen to be greater near Ri.
This is achieved by performing the change of variable z � 1/r,
which transforms the integral of 1/r2 in eq. (80) into the integra-
tion of the unit function:


i �
1

Ri
�

1

4� �
�i

d�d�cos ��dz (81)

The integral above is then evaluated using a uniform grid of points
{ zk, cos �l, �m} in 0 � zk � 1/Ri, �1 � cos �l � 1, and 0 �
�m � 2�, such that the corresponding point rklm in Cartesian
space is inside the solute volume (�r � rj�

2 � Rj
2 for at least one

atom j) but outside atom i (�r � ri�
2 
 Ri

2)


i �
1

Ri
�

1

4� �
klm

rklm��i

����cos ���zk
1 � zk� (82)

where �(cos �) and �� are the grid spacings for the angular
variables and we have used the fact that within the kth radial
integration interval �zk

zk
1 dz � zk
1 � zk. In the calculations
presented in this article we have used 80 integration points in each
angular and radial direction (for a total of 512,000 grid points) for
each solute atom.
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