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T
he development of next-generation electronics is very 
dependent on the discovery of materials with exceptional 
surface-state spin and valley properties. Bismuth has 
most of the characteristics required for technological 
development in this field. Thin films of this element have 

shown nontrivial topology1-3 enabling their definition as a topological 
insulator and a distribution of spin states and valleys in the band 
diagram that are suitable for both spintronics and valleytronics 
applications.4 In some cases, these properties depend on the quantum 
confinement of the related particles or quasi-particles; hence they can 
be tuned by varying the thickness in the ultrathin film range.5 Finally, 
thin films of Bi can be processed by electrochemical lithographic 
methods.6

Bismuth ultrathin films can be obtained by techniques that require 
vapor phase with different degrees of vacuum (e.g., PVD and CVD).7- 9 
These methods are efficient for producing flat polycrystalline thin 
films of Bi. Similarly, Bi thin films were electrodeposited from 
an aqueous solution containing organic additives with multiple 
morphologies and textures according to the different surface effect 
promoted by these substances.10 These studies have demonstrated that 
Bi thin films are among the wide range of technologically interesting 
coatings that cannot be easily obtained from aqueous solutions 
without interference from metal oxide growth. In most cases, these 
processes lead to films with uncontrolled morphology.

Introduction to SEBALD

To avoid these limitations, we explored the possibility of using 
electrochemical atomic layer deposition (E-ALD) to deposit highly 
ordered ultrathin films from diluted aqueous solutions at room 
temperature and pressure. In the present context, we use E-ALD for the 
growth of metal chalcogenide films. Underpotential deposition (UPD) 
of metal chalcogenide is possible due to the energy gain involved in 
the formation of the corresponding chalcogenide, so that an adlayer 
of metal can be deposited at an underpotential on a chalcogenide 
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adlayer covering the electrode surface. The combination between the 
alternation of solutions containing precursor elements that form this 
type of compound and UPD is the basis of E-ALD. Repetition of 
the basic cycle of depositions leads to the growth of semiconductor 
materials whose thickness increases with the number of cycles, up 
to the ultrathin film range. Then, after selective electrodesorption of 
the chalcogen layer, the resulting film is constituted by a confined 
layer of metal, which reorganizes its shape in ordered crystalline 
domains. Therefore, the selective desorption of the chalcogen leaves 
an increasingly higher amount of metals with the number of cycles.

The combination of E-ALD with this second stage leads to a process 
called selective electrodesorption-based atomic layer deposition 
(SEBALD), which is depicted by the scheme in Fig. 1. SEBALD was 
successfully used to grow Cd with a control level not achievable in 
overpotential deposition through the application of Faraday’s laws 
(even when deposition was limited to very low overpotentials)11 
and to obtain Co/Fe catalytic clusters.12 In what follows, we show 
that with the SEBALD protocol it is possible to obtain the growth 
of a high-quality bismuth ultrathin film on the Ag (111) surface. In 
this way, we have overcome most of the problems derived from the 
electrochemical properties of bismuth at the solid-water electrified 
interface.

SEBALD of Bismuth Thin Films

As often happens in E-ALD,13 deposition during the first step plays 
a crucial role for the growth of the following layers. The first phase 
of SEBALD consisted of the deposition of (Se/Bi)n on Ag, followed 
by the removal of selenium (Fig. 1). For this reason, the deposition 
conditions and the stability of the two elements were investigated 
first.

The deposition of Se is a well-known process described in 
literature.14,15 A selenide solution was used, and silver working 
electrode potential was set at −0.90 V versus Ag/AgCl sat. KCl 

(continued on next page)

Fig. 1. Schematic operations of a SEBALD alternating a chalcogenide layer to a metal one. In our study, the chalcogenide is represented by selenium while 
bismuth is the metal.
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reference electrode for one minute. Then, to remove the excess 
bulk selenium deposited, leaving only the UPD layer on silver, the 
working electrode was immersed in ammonia buffer solution for 
another minute at the same potential value. The bismuth settles to 
more positive potentials than selenium; therefore it is crucial for a 
correct E-ALD to verify the stability of Se with an anodic scan, and 
the results show that it does not get oxidized. Once we had ensured 
the stability of the Se UPD layer, we proceeded with the UPD of 
bismuth. The thermodynamic possibility of this deposition is justified 
by the presence of a cathodic peak (−0.40 – −0.50 V) slightly before 
the massive deposition one (over −0.50 V) in a cyclic voltammetry 
scan of a bismuth (III) solution (inset image in Fig. 2). After that, a 
conventional UPD study was carried out to evaluate the amount of 
metal deposited in function of the deposition potential and time.16 The 
optimal UPD condition to deposit bismuth on selenium consists of 
keeping the potential fixed at −0.43 V for one minute in the presence 
of the bismuth solution and then washing the sample with ammonia 
buffer solution.

After having optimized the UPD conditions of both the elements, 
the first step of SEBALD was performed by sequential automatic 
alternate deposition for multiple cycles, obtaining a deposit of 
increasing thickness. After the deposition process, SEBALD was 
completed by setting the working electrode potential at −2.0 V and 
washing the cell in the buffer solution, in order to remove all the 
selenium previously deposited. Anodic stripping of the remaining 
bismuth confirmed its growth over the number of cycles performed 
(Fig. 2). For the very first cycles, a typical rapid growth, due to 
interaction phenomena confined to the nanoscale, is present. After 
the fifth deposition cycle, the trend becomes linear.

A 50-cycles final bismuth deposit was morphologically 
characterized, revealing that this simple SEBALD process, 
performed at room conditions, allows obtainment of a highly ordered 
and crystalline deposit difficult to obtain with other techniques. From 
the SEM image (Fig. 3A), we can observe how the bismuth deposit 
obtained by SEBALD has reorganized into its typical crystalline 
shape,17 hard to obtain with direct bulk deposition. The EDX (Fig. 3B) 

data confirm the presence of bismuth metal on the silver electrode 
without any traces of selenium, diagnostic of a proper SEBALD. 
AFM measurements (Fig. 3C) give useful information on the surface 
topology: the estimated RMS roughness is only 5.06 nm; moreover 
the image shows an overview of the sample.

Finally, the quality of the Bi thin film was quantified by XRD. 
The specular scan reported in Fig. 4 shows the peak of the substrate 
(Ag (111)) and, more importantly, peaks of Bi thin film corresponding 
to (102) and (204) crystalline planes. This observation indicates the 
growth of high-crystalline films with [102] texturing.

Conclusions and Outlook

The development of next-generation electronic devices demands 
specific materials that often are not simple to synthesize in the 
required way. SEBALD opens up the possibility of employing 
electrochemical processes to build, one by one, monolayers of 
highly pure and ordered structures. The SEBALD methodology 
constitutes an efficient approach to overcome the limitations of 
electrodepositing bismuth layers from aqueous solution. This is 
done by exploiting the SLRs of bismuth and selenium on Ag (111), 
characterized conclusively by means of electrochemical methods. 
The UPD experiments proved the occurrence of a SLR leading to the 
growth of a Biad on Se. On this basis, multiple E-ALD cycles could 
be performed to grow the Bi2Se3 compound. Subsequent selective 
desorption of selenium concludes the SEBALD process and allows 
obtainment of the bismuth ultrathin film.

We were able to grow extremely ordered bismuth layers with 
exquisite control on film thickness, as proven by the topography 
and morphology of the resulting ultrathin films. This process is a 
very promising candidate for the growth of metal ultrathin films and 
constitutes an easy way to obtain an ordered bismuth ultrathin film of 
controlled thickness under room temperature and pressure. The films 
obtained by SEBALD are highly crystalline and oriented; moreover 
they are characterized by low roughness. All these properties are 
promising for ultimate application in new-generation electronic 
devices.                 
© The Electrochemical Society. DOI: 10.1149/2.xxxxx.
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Fig. 2. Deposit growth according to the number of deposition cycles. After the first five cycles, the deposition rate becomes linear. 
Inset shows the cyclic voltammetry of bismuth solution on Ag/Se in which is evident the cathodic UPD peak of the metal.
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Fig. 3. A) Secondary electrons SEM image of the 50-layers bismuth sample, showing the shape and morphology of the deposit. B) EDX spectrum collected on 
the same area, with an accelerating voltage of 10 kV that confirms the absence of selenium. C) AFM image of the same sample.

Fig. 4. XRD measurement of the 50-layers bismuth sample to prove the crystallinity of the deposit.
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