

Agilent VnmrJ 4.2

Familiarization Guide

Notices

© Agilent Technologies, Inc. 2014

No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Agilent Technologies, Inc. as governed by United States and international copyright laws.

Manual Part Number

G7446-90569

Edition

Revision A, May 2014

This guide is valid for 4.2 and later revisions of the Agilent VnmrJ software, until superseded.

Agilent Technologies, Inc. 5301 Stevens Creek Blvd. Santa Clara, CA 95051

Warranty

The material contained in this document is provided "as is," and is subject to being changed, without notice, in future editions. Further, to the maximum extent permitted by applicable law, Agilent disclaims all warranties, either express or implied, with regard to this manual and any information contained herein, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. Agilent shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein. Should Agilent and the user have a separate written agreement with warranty terms covering the material in this document that conflict with these terms, the warranty terms in the separate agreement shall control.

Technology Licenses

The hardware and/or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license.

Restricted Rights Legend

U.S. Government Restricted Rights. Software and technical data rights granted to the federal government include only those rights customarily provided to end user customers. Agilent provides this customary commercial license in Software and technical data pursuant to FAR 12.211 (Technical Data) and 12.212 (Computer Software) and, for the Department of Defense, DFARS 252.227-7015 (Technical Data - Commercial Items) and DFARS 227.7202-3 (Rights in Commercial Computer Software or Computer Software Documentation).

Safety Notices

CAUTION

A **CAUTION** notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a **CAUTION** notice until the indicated conditions are fully understood and met.

WARNING

A WARNING notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met.

1

2

Introduction 9
Introduction to VnmrJ Workflow 10
Commonly Used VnmrJ Terms 11
Where to Find Help 13
Contact information 14
VnmrJ Interface 15
VnmrJ User Interface 16
Toolbars 17
System toolbar 17
Hardware toolbar 18
Graphics toolbar 19
Common graphics display toolbar controls 19
1D display spectrum toolbar controls 20
nD display toolbar controls 21
Display FID toolbar controls 23
Annotation toolbar controls 24
Command Line 26
Graphics Canvas 27
Tray display 28
Vertical Panels 30
Protocols Vertical Panel 31
Experiment Selector 32
Experiment Selector Tree 33
Study Queue 34
QuickSubmit vertical panel 39
Frame vertical panel 41
Viewport vertical panel 45

ProcessPlot vertical panel 49 ArrayedSpectra vertical panel 52 Parameter Panel 57 **VnmrJ Menus** 58 Acquisition Menu 58 Automation Menu 59 Edit Menu 63 **Experiments Menu** 66 File Menu 69 Help Menu 71 Process Menu 71 Tools Menu 74 **Probe Protection** 83 View Menu 85 **Changing Display Colors** 86 To change the look and feel of the VnmrJ user interface 86 To change color options for spectral drawing 87 To change color options for plotting 88 **Experiment Selector Editor** 90 File Browser 93 95 Status Charts Features of the status chart window 96 Using the status chart 97 **VnmrJ Preferences** 103 **Templates Tab** 104 Automation Tab 112 Automation Schedule 114 SQview Tab 119 Queue Tab 120

3

eOptions Tab 123 Data Mirror Tab 126 SampleTags Tab 128 UserPrefs Tab 130

4 Preparing for an Experiment 133

Preparing for an Experiment 135

134

Prepare the sample 136

Load the sample 137

Starting VnmrJ

Tune the Probe 139

Tuning probes on systems with ProTune139Manual tuning using mtune141

Optimize the Lock 142

Shim the System 143

Shimming on the lock signal manually143Proshim144Use a Proshim method in automation146

Set up the Experiment 147

5 Acquiring Data 149

Acquire a Spectrum Manually 150 Using a Study Queue to Acquire Data 151 Build a Study Queue 151 Run a Study Queue 153 Using Express Submit with a sample changer 154 Stopping an Experiment 155

6

Processing Data 157
Loading Data from the Study Queue 158
Retrieving a Data Set 159 Use the file browser to open a data set 159 Use the VJ Locator to search the database 160
Fourier Transform the Data Set162Fourier transform of one-dimensional data162Fourier transform of two-dimensional data162
Alter Processing Parameters163Zero-filling163Weighting and apodization163Linear prediction163Referencing164Integration164Phasing164
Interacting with the Spectrum Using the Graphical Toolbar 165 Integration and graphics controls 165
Aligning and Stacking Spectra 166
Displaying and Plotting Integrals 167
Baseline Correction 168
Working with Viewports 169
Using Viewports Controls 170 Show and hide viewports 170 Make a viewport active 170 Add a label to the viewport 171 Set viewport layout 171 Synchronize cursors and axes 171
Assign colors to spectra by viewnort 172

Using viewports as a spectral interpretation tool 173 Overlaying homonuclear data sets 173 Cross referencing heteronuclear data sets 175 Save Current Process or Display Parameters 177

7 Plotting Data 179

Plotting Data Saved as a Study180Saving and Printing a Graphics File182Plotting the Data183Changing Color Themes187Pasting Text into a Text Editor or Other Application188

8 Customizing VnmrJ Actions 189

Clone a New Study 190 Clone Current Study 192 Clone Current Experiment 193 Clone Location Queue 194 Command and Protocol Buttons 195 Edit Parlib 198

9 Customer Training 199

Training 200 Previous Experience with Agilent NMR Software 201 Documentation 202 Sample Requirements 203 Introduction to VnmrJ 4 Operation 204 Overview of the VnmrJ 4 Interface 205

Basic (Automated) VnmrJ 4 Operation	206
Detailed (Manual) VnmrJ 4 Operation	207
Linux Training 211	
VnmrJ 4 Administration 213	
VnmrJ 4 Administration - Quick Start	214
Hardware Overview 216	
Customer Support Information 218	
Lock Frequency (lockfreq) 219	
Administrative Chores 220	

10 Automated Data Collection and Spectra Interpretation 221

Automated Data Acquisition 222 Sample for Automated Data Acquisition 222 Login to VnmrJ 223 Setting up the study and lock solvent 223 Building a Study 224 225 Customizing the parameters and starting data acquisition Starting data acquisition using a study 226 Interpreting the Indanone Spectra 227 Calibration – When is it Necessary 227 Interpretation of the Calibration Data 227 Interpretation of 2-Ethyl-1-Indanone Spectra 235

Introduction

Introduction to VnmrJ Workflow 10 Commonly Used VnmrJ Terms 11 Where to Find Help 13

This guide provides an overview of the Agilent VnmrJ software and how you use it to acquire and process NMR spectra using Agilent NMR Spectrometers. Descriptions of the VnmrJ program user interface, toolbars, and menu items are included, along with general overview and description of the VnmrJ workflow. For more detailed information on the various workflow steps, see the *Agilent VnmrJ Spectroscopy User Guide* provided with your system.

1 Introduction

Introduction to VnmrJ Workflow

Introduction to VnmrJ Workflow

The VnmrJ program is used to acquire and process data from your Agilent NMR spectrometer. Collecting an NMR spectrum requires the following steps. These steps are described in the following sections. For information on the VnmrJ program window, toolbars, and menu items, see "VnmrJ Interface" on page 15.

- Preparing for an Experiment prepare and load the sample, tune the probe, and shim.
- Acquiring Data select experiment to be run on the sample and enter sample information, or create a study containing multiple experiments to run on one or more samples.
- Processing Data use the data processing tools to optimize the spectrum display.
- Plotting Data use the plotting tools and Graphics Toolbar to adjust the displayed spectrum for the desired output.

Commonly Used VnmrJ Terms

The following table lists some common VnmrJ terms that are used in this guide.

ltem	Description
Experiment	Combination of a pulse sequence, a parameter set, and possibly a data set.
Experiment Protocol	Software device that creates an experiment by executing a macro to set up parameters for a given pulse sequence. In Review Mode, a protocol operates in the current workspace and is typically followed by data acquisition. In Submit Mode, a protocol adds a node to the Study Queue for subsequent execution at run-time, followed by the start of data acquisition.
Sample	A physical object, either a tube with liquid or a solid sample in a rotor.
Study	Collection of one or more nodes in the Study Queue. In general, each node represents an experiment. A study is a list of operations to perform; it is not necessarily associated with a specific sample or any other physical object.
Study Queue	Interface feature that is used to display all the various types of queues that are available in VnmrJ. The Study Queue can be configured to show information in several different ways.

 Table 1
 Commonly used VnmrJ terms

1 Introduction

Commonly Used VnmrJ Terms

ltem	Description
Submit Mode and Review Mode	When you are interacting with data, processing/plotting data, or collecting data in manual mode, you interact with the software in Review Mode. When you use the Study Queue to load, build, edit, customize, or otherwise work with a study, the software is in Submit Mode. Submit Mode is entered by clicking the New Study , Edit Study , or Continue Study buttons. The interface is moved into Review Mode when you click the Done button in the Study Queue window (or it happens automatically upon sample submission).
Viewport	Interface feature that is used to display the contents of a workspace.
Workspace	Directories that can be thought of as digital objects to hold an experiment and/or data set. Equivalent to the idea of exp1, exp2, exp3, exp(n) in older versions of Vnmr.

Table 1 Commonly used VnmrJ terms (continued)

Where to Find Help

Agilent provides a complete set of documentation to get you started generating quality data as quickly as possible. The following table contains a summary of the manuals and user guides provided, and what kind of information they contain.

Manual title	Provided as	Information in this manual
VnmrJ Installation Guide	Printed, PDF, and in online help	Instructions on how to install Linux and the VnmrJ software
VnmrJ Administration Guide	PDF, and in online help	How to administer the VnmrJ system, including adding and changing users, and setting permissions and preferences
VnmrJ QuickStart	Printed, PDF, and in online help	Step-by-step overview of how to use Agilent VnmrJ software to collect an NMR spectrum on NMR systems with or without a Robot Sample Changer
VnmrJ Familiarization Guide (this document)	Printed, PDF, and in online help	Overview of the VnmrJ software, including description of the interface, menus, and commonly used tasks
VnmrJ Spectroscopy User Guide	PDF, and in online help	A more in-depth description of using the VnmrJ software to set up studies, perform shimming, and acquire, process, display, and output data
NMR System Calibrations Guide	PDF, and in online help	Use of VeriPulse, Autotest, and system calibrations are described
Basic NMR Experiments Familiarization Guide	PDF, and in online help	Provides a more detailed discussion about some of the most commonly used pulse sequences available in the VnmrJ Experiment Selector
Experiment Reference Guide	PDF, and in online help	Complete descriptions of VnmrJ experiments
Command and Parameter Reference Guide	PDF, and in online help	Comprehensive listing of VnmrJ commands and parameters
User Programming Guide	PDF, and in online help	Comprehensive pulse sequence programming and customization reference

Table 2VnmrJ manuals and their uses

1 Introduction

Contact information

Manual title	Provided as	Information in this manual
CRAFT User Guide	PDF, and in online help	Overview and step-by-step instructions for using the CRAFT (Complete Reduction to Amplitude Frequency Table) application within VnmrJ
BioPack Quick Start Guide	Printed, PDF, and in online help	Step-by-step overview of using the BioPack option
BioPack User Guide	PDF, and in online help	Complete information on how to use the BioPack option
BioPack Experiment Guides	PDF, and in online help	Descriptions of BioPack experiments
SolidsPack User Guide	PDF, and in online help	Describes the use of SolidsPack, used to run a solids experiment and control solids console accessories such as shims, variable temperature, and magic- angle spinning
3D Gradient Shimming User Guide	PDF, and in online help	Description of how to use the Agilent 3D Gradient shimming software, used to map and optimize room- temperature, shim systems without additional hardware

Table 2 VnmrJ manuals and their uses (continued)

Contact information

USA

Address:

Agilent Technologies, Inc.

5301 Stevens Creek Blvd.

Santa Clara, CA 95051

Telephone Number:

Toll Free: +1 (800) 227 9770

Agilent website (all countries)

To find contact information for your location, click the following link, select your country, and then click Go.

http://www.chem.agilent.com/en-us/ContactUS/Pages/ContactUs.aspx

VnmrJ User Interface 16 Toolbars 17 Command Line 26 Graphics Canvas 27 Vertical Panels 30 Protocols Vertical Panel 31 Parameter Panel 57 VnmrJ Menus 58 Changing Display Colors 86 Experiment Selector Editor 90 File Browser 93 Status Charts 95

This section contains descriptions of the main features of the VnmrJ program interface.

VnmrJ User Interface

VnmrJ User Interface

The main areas of the user interface for VnmrJ are shown in Figure 2. These areas are described in more detail in other sections of this guide.

Toolbars

The VnmrJ toolbars provide quick access to commonly used functions. To view a description of a toolbar icon, move the mouse cursor over the icon until the description appears.

System toolbar

The system toolbar provides access to common system functions. It also lets you show or hide graphics toolbars.

Icon	Description
D.	Create a new workspace.
	Opens the File Browser to search for and open a file.
	Opens the File Browser to find a location and save data.
111	Opens the Styles and Themes pop-up, where you can select or customize colors or color themes for the VnmrJ user interface.
×	Cancel a command.
	Save current screen layout: graphics, parameter panel, locator sizes.
	Save current screen layout: graphics, parameter panel, locator sizes.
	Draw spectral data using a light background. This does not change the User Interface theme.

Table 3System toolbar controls

Hardware toolbar

lcon	Description
	Draw spectral data using a dark background. This does not change the User Interface theme.
Wm	Opens the Display FID toolbar controls.
ال	Opens the 1D display spectrum toolbar controls.
0	Opens the nD display toolbar controls.

Table 3 System toolbar controls (continued)

Hardware toolbar

The Hardware toolbar, located at the bottom of the VnmrJ window, shows a trash can icon and a display area dedicated to real-time hardware information.

Figure 3 Hardware toolbar

Sample temperature, spin rate, lock level, and current sample changer location are displayed to the left of the Hardware toolbar.

Status plots

The status plots provide useful information about sample temperature, spin rate, lock level, and current sample changer location. For more information, see "Status Charts" on page 95.

Acquisition status

Real time events such as system being idle, locking, shimming, or acquiring data are displayed in the field located to the right of the probe file. If the system is active, each event's remaining time is displayed.

Message box

To the right of the Hardware toolbar is a system message box. Error messages and other important system information are displayed in this area.

Graphics toolbar

The Graphics toolbar is used to control the interactive display in the graphics canvas.

See also

"Common graphics display toolbar controls" on page 19

"1D display spectrum toolbar controls" on page 20

"nD display toolbar controls" on page 21

"Display FID toolbar controls" on page 23

For more information on using the graphics toolbar, see "Interacting with the Spectrum Using the Graphical Toolbar" on page 165.

Common graphics display toolbar controls

The following tools are common to 1D, nD, and FID display toolbars.

1D display spectrum toolbar controls

lcon	Description
5 2 2 3	Reset to full display.
Q	Zooms in to a region in graphics canvas defined by cursor placement. (Click mouse once to define first cursor and then again to define second cursor.)
	To zoom further, click to define cursor positions, and then click the zoom icon again.
Q	Zooms out.
Q	Pan, or "rubber band" zoom. Click once to define first cursor, then click again and drag.
2	Redraw display.
೧	Return to previous tool menu.

Table 4 Graphic display toolbar controls

1D display spectrum toolbar controls

The following table shows the icons that appear when you click the 1D Display icon on the graphics toolbar.

Table 51D display Spectrum toolbar

lcon	Description
	One cursor in use, click to toggle to two cursors.
	Two cursors in use, click to toggle to one cursor.
0	Click to expand region.
tt	Click to expand to full spectral display.

lcon	Description
کر	Display integrals menu.
کر	Display partial integrals.
~	Display full integral.
. ~5	Hide integrals.
- %	Define integrals.
\checkmark	Adjust integral level/tilt.
<u>-×</u>	Delete integrals.
	Display or hide scale.
*	Pan or move spectral region.
٦t	Toggle threshold on or off.
-1fr	Phase spectrum.

Table 5 1D display Spectrum toolbar (continued)

nD display toolbar controls

The following table describes the icons displayed when you click the 2D or 3d Display icon on the Graphics toolbar.

nD display toolbar controls

lcon	Description
0	Display color map and show common nD graphics tool.
0	Display contour map and show common nD graphics tool.
zić	Display stacked spectra and show common nD graphics tool.
鑫	Display image map and show common nD graphics tool.
	One cursor in use, click to toggle to two cursors.
	Two cursors in use, click to toggle to one cursor.
	Expand to full display.
*	Pan and stretch.
삼	Show trace.
الد	Show projections.
<u>lı</u>	Shows horizontal maximum projection across the top of the 2D display.
	Shows horizontal sum projection across the top of the 2D display.
4	Shows vertical maximum projection across the top of the 2D display.
F.	Shows vertical sum projection down the left side of the 2D display.
1	Rotate axes.

Table 6nD display toolbar controls

lcon	Description
	Increase vertical scale 20%.
Q	Decrease vertical scale 20%.
-4r	Phase spectrum menu.
	First spectrum selection.
<u>۲</u>	Second spectrum selection.
\odot	Enter peak pick menu.

Table 6 nD display toolbar controls (continued)

Display FID toolbar controls

The following table contains descriptions of the commands available from the menu that appears when you click the Display FID icon in the Graphics toolbar.

Table 7	Display FI	D toolbar controls

lcon	Description
	One cursor in use, click to toggle to two cursor
	Two cursors in use, click to toggle to one cursor
W	Click to expand to full FID display
*	Pan and stretch.
Re Im	Click to show real and imaginary

Annotation toolbar controls

lcon	Description	
Im= 0	Click to show real and zero imaginary	
Re	Click to show real only	
	Toggle scale on and off	
14	Phase FID	

Table 7 Display FID toolbar controls (continued)

Annotation toolbar controls

The following table describes the icons displayed in the graphics toolbar (**View > Toolbars > Graphics Toolbar**) in "ds", "dss", and "dconi" display modes.

Table 8 Annotation toolbar controls

lcon	Description
G	Toggle to show or hide annotations in graphics canvas and hard copy plot
R	Select annotation for editing. Use this mode to move or delete an annotation, or change properties such as color and line thickness.
\bigcirc	Position – displays the value of the position where it is located, in Hz, PPM, etc. The value is updated automatically as the annotation is moved.
Τ	Text – Text with adjustable font, size, style, color, and transparency.
<u> </u>	Line – Line with a adjustable thickness, color, and transparency.
1	Arrow – Arrow with adjustable thickness, color, and transparency.
	Box – Box with adjustable thickness, color, and transparency, with rounded or square corners.

lcon	Description
\bigcirc	Oval – Oval with adjustable thickness, color, and transparency.
\triangleleft	Polygon — Polygon with adjustable thickness, color, and transparency.
7	Polyline – Connected lie segments with adjustable thickness, color, and transparency.
	X-Bar – displays its width in Hz, PPM. The value is updated automatically as the annotation is resized.
Γ	Y-Bar – displays its height in intensity units, or for 2D data, in Hz, PPM, etc. The value is updated automatically as the annotation is resized.

Table 8 Annotation toolbar controls (continued)

2 VnmrJ Interface Command Line

Command Line

Command Line

One of the most powerful aspects of the VnmrJ software is the ability it provides to users to execute commands and macros directly using the Command Line. For more information on VnmrJ commands and macros, see the Agilent VnmrJ Command and Parameter Reference Guide and the Agilent VnmrJ User Programming Guide.

Graphics Canvas

The Graphics Canvas is used to display and interact with graphic and text information. For more information, see "Interacting with the Spectrum Using the Graphical Toolbar" on page 165.

When a spectrum is first displayed on the Graphics Canvas, or the display is refreshed, the bar above the Graphics Canvas displays the functions of the left and right mouse buttons and the scroll wheel:

- Use the left mouse button to set the left cursor,
- Use the right button to set the right cursor
- Use the scroll wheel to adjust the vertical scale of the spectrum

Figure 4 Graphics Canvas

Tray display

Tray display

If you have a robot sample changer, a graphical display of the changer gives you access to a menu of commands when you right-click the mouse button over the tray display.

Figure 5 Tray display menu

lable 9	Tray displa	ay menu	options
---------	-------------	---------	---------

ltem	Description
Show Study	Displays the queue for the selected location in the Study Queue.
Edit Study	Loads a study into the Study Queue from the tray display in preparation for modification of that study.
Delete Study	Deletes the selected location queue.
Copy Study	Copy Study to clipboard.

ltem	Description
Paste Study	Paste Study from clipboard.
Resubmit Study	Resubmits the selected location to acquisition.
Clone Study	Clones the selected location queue.
Sample in Magnet	Displays the Sample in Magnet popup, preloaded with that location for a sample change operation.
Express Submit	Utility to submit a sample to a specific location using automation, see Using Express Submit with a sample changer.
Study Information	Displays information about Study.
Swap Queue	Swaps experiments queued in the day to night and vice versa. Only displayed if there is an active Study in the selected location.

 Table 9
 Tray display menu options (continued)

Vertical Panels

Vertical Panels

The vertical panels area of the VnmrJ user interface provides quick access to related functions. Each vertical panel contains one or more functional areas where you perform tasks such as selecting experiments and setting up data display.

Figure 6 Vertical panel tabs in VnmrJ

For more information, see "Protocols Vertical Panel" on page 31, "QuickSubmit vertical panel" on page 39, "Frame vertical panel" on page 41, "Viewport vertical panel" on page 45, and "ProcessPlot vertical panel" on page 49.

Protocols Vertical Panel

The Protocols vertical panel contains the Experiment Selector, the Experiment Selector Tree, and the Study Queue. To show or hide one or more of these panels, click **View** and then select the item you want to show or hide. See also Experiment Selector, Experiment Selector Tree, and Study Queue.

Experiment Selector

The Experiment Selector can be used to load studies into the Study Queue or the current workspace. When an experiment is selected in Experiment Selector, all submissions to automation can be selected by double-clicking and experiment or dragging and dropping it to the Study Queue. You can configure families of experiments and content by using the Experiment Selector. Simple or complex experiments, based on an account or an operator within an account, are accessible as needed.

Use the Experiment Selector Editor to change the order and display of experiments/protocols within the Experiment Selector. For more information, see "Experiment Selector Editor" on page 90.

Experiment Selector 📮		
Common Liquids Calibration Service BioPack		
PROTON	CARBON	
(H)PRESAT	(H)wet1D	
(HH)gCOSY	(HC)HSQCAD	
(HC)gHMBCAD	(H)NOESY1D	
Studies 🗸		

Experiment Selector Tree

The Experiment Selector Tree is a convenient way to view the available experiments. Instead of displaying the experiments in tabs (as in the Experiment Selector) experiments are grouped under their respective experiment types. Use the buttons at the bottom of the panel to expand or contract the tree and to search through the tree for an experiment using part or all of the name.

Figure 8 Experiment Selector Tree

Study Queue

Table 10	Experiment Selector buttons		
Button	Action		
Q	Type text in this field, and click the search button. The tree view is expanded and selects the first experiment/protocol with a name that contains the text. Click the search button additional times to continue the search further down the tree until the bottom of the tree is reached, at which point the search resumes at the top. Searching for a "Find" text that is not matched anywhere keeps the existing tree view, but does not match a selection.		
	Collapses an expanded tree		
* =	Expands the tree view		

Study Queue

VnmrJ allows the ability to construct a linked list of experiments as a Study Queue that can be performed on any given sample. The appearance of the Study Queue changes depending on if you have a sample changer installed, or when in Submit mode or Review mode. For more information, see "Build a Study Queue" on page 151.

A Study Queue is used for both data acquisition and processing. Its many functions are described in more detail in the *Agilent VnmrJ Spectroscopy User Guide*.

Study Queue		中 ×			
Sample	 Active sample 				
 Spectrometer 	 Study cluster 				
Ethylindanone		-			
Ethylindanone	_PROTON_01	=			
Ethylindanone	_PROTON_02				
Ethylindanone	_HOMODEC_01				
Ethylindanone	_CARBON_01				
Ethylindanone	Ethylindanone_CARBON_02				
Ethylindanone	Ethylindanone_gCOSY_01				
Ethylindanone,	Ethylindanone_COSY_01				
Ethylindanone,	_gDQCOSY_01				
Ethylindanone,	_DQCOSY_01				
Ethylindanone,	_TOCSY_01				
Ethylindanone,	_zTOCSY_01				
Ethylindanone,	_NOESY_01	-			
New stu	dy Continue stud	dy			

Table 11General Study Queue features

ltem	Description	
View	Selections that determine what is displayed in the Study Queue:	
	Sample — displays the study linked to the data in the current workspace	
	Spectrometer — displays all studies in the current automation run	
	Active Sample—displays the currently acquiring study	
	Study Cluster—displays study cluster, if one is defined	
New Study	Initializes a new study and moves the software to Submit mode	
Continue Study	Used to modify the current study displayed in the Study Queue	
Show Study from Location (robot changer only)	Loads a study from the tray display	

Study Queue

ltem	Description	
Cancel	Abandons any changes made to the current study and returns the software to Review mode.	
DayΩ (robot changer only)	Runs study according to schedule set in DayQ. The schedule is set by the account administrator using the Automation tab of the Edit > Preferences window.	
NightQ (robot changer only)	Runs study according to schedule set in NightQ. The schedule is set by the account administrator using the Automation tab of the Edit > Preferences window.	
Priority sample (robot changer only)	Allows a sample to be submitted ahead of all other samples in the current automation run. This feature is controlled by the system administrator on an operator-by-operator basis.	
Submit	Submits the current study to acquisition, using one of the following choices:	
	Automation–submits the study to the Spectrometer Queue.	
	Foreground exp—submits the study to acquisition in the current workspace.	
	Background–submits the study to a background copy of VnmrJ.	
Foreground (shown when not using robot sample changer)	Submits the study to acquisition in the current workspace.	
Background (shown when not using robot sample changer)	Submits the study to a background copy of VnmrJ.	
Clear Pending Exp from Queue	Deletes all pending experiments from the current Study Queue.	

Tahle 12	Study	Queue features	— Suhmit Mode
	oluuy		
ltem	Description	Description	
---------	---	---	--
Options	Available when in Spectrometer view. settings on the Spectrometer View P	Configure and update display reference window.	
	Spectrometer Vie	w Preference ×	
	Display order	Update display	
	Set user defaults	Update ALL	
	Active study	Active study	
	Completed studies	Completed studies	
	Studies in progress	Studies in progress	
	FIDs (chronological)	FIDs (chronological)	
	Errored studies	Errored studies	
	 Active study (here) 		
	Pending studies	Pending studies	
	Studies in DayQ/NightQ	DayQ/NightQ	
	Reverse chronology for comple	ted studies/FIDs	

Refresh display

Close

Rebuild display

Table 13Study Queue features — Review Mode

Right click over a node to access options, shown below.

Open Experiment Delete Experiment Collapse Node Expand Node

Figure 10 Study Queue node options

Study Queue

ltem	Description	
Open Experiment	Opens selected experiment and displays parameters in the Parameter Panel.	
Delete Experiment	Removes experiment from the Study Queue.	
Collapse Node	Collapses selected node so that only experiment name is displayed.	
Expand Node	Expands node so that all information is displayed.	

QuickSubmit vertical panel

The QuickSubmit panel provides an easy way to quickly submit samples for acquisition.

Protocols	QuickSubn	nit	Frame	Viewport
QuickSubmit	L			₽ ×
Next availa	able location:	1		
Operator:	vnmr1			
Active stud	ly: Inactive			
New	study	C	ontinue	study
Parameter	rs			
Sample na	me			
Solvent	CDCI3			-
Comments				
1				
Experime	nt queue	OTO	N	
Select exp	eriment PR		N	-
Add t	o DayQ	A	dd to Ni	ghtQ
Cus	tomize		Clear qu	eue
Priority	sample [_ Ne	xt location	
Sut	omit		Logout	
Messares				
Ready for	Ready for a New Study			
Next Submission will start at PriorityO = 11:22 AM				
Priority (2, 11:32 AM DayQ (11:32 AM NightQ (06:00 PM				
Edit e	xp list	Me	sage hi	story

Figure 11 QuickSubmit vertical panel

QuickSubmit vertical panel

Table 15	QuickSubmit (Options
----------	---------------	---------

ltem	Description	
New study	Click to begin a new study.	
Continue study	Click to continue the study currently in the Study Queue.	
Parameters	Enter descriptive sample parameters and comments.	
Experiment queue	From the Select Experiment drop-down list, select an experiment, then click Add to DayQ or Add to NightQ to place the experiment in the Study Queue. Continue to add experiments as desired.	
Customize		
Clear queue	Clears the experiments from the queue.	
Submit	Submits the current QuickSubmit queue for acquisition.	
Logout	Click to log out of the VnmrJ system.	
Edit exp list	Edit the existing experiment list.	
Message history	Click to see a log of previous messages.	

Frame vertical panel

Use the Frame vertical panel to create an inset frame. An inset frame initially shares the same workspace and data as the viewport. However, you can change or remove it. For details on creating and working with insets, see the *Agilent VnmrJ Spectroscopy User Guide*.

ProcessPlot	Arrayed	Spectra
Protocols	QuickSul	omit Frame Viewport
Frame	_	Ф >
Inset		
		Reset frame
	P	Remove selection
		Remove all
_		
Text		
New	/Edit	Remove selection
Show	Hide	Remove all
Select temp	late	
		•
Name Non	.	
		Delete terrelate
Save template Delete template		
Graphics		
Get	logo	Show all
Set logo		Remove all
Misc		
Show fields		
Show crosshair		Show frame border

Figure 12 Frame vertical panel

Frame vertical panel

ltem	Function
Inset	
	Default mode — left mouse click moves the left cursor and right mouse click moves right mouse cursor.
	Inset mode — left mouse drag a box over a spectrum region creates an inset frame of the region. A viewport can have multiple inset frames. Exit inset mode — release mouse button.
Reset frame	Resets inset frame to default
Remove selection	Removes selected frame or item
Remove all	Removes all inset frames
Text	Lets you add text to an inset frame.
New/Edit	Create or change a text inset
Show	Show text inset
Hide	Hide text inset
Remove selection	Remove selected text
Remove all	Removes all text
Select template	Select a saved text inset template
Name	Give a name to the text inset
Save template	Save the text inset as a template
Delete template	Delete the selected template

Table 16Frame vertical panel options

ltem	Function
Graphics	
Get Logo	Lets you select a logo to show in the frame
Set Logo	
Show All	Shows all graphics in the frame
Remove All	Removes all graphics from the frame
Misc	
Show Fields	Display cr, delta, vp etc fields at the bottom of the viewport.
Show Crosshair	Display cross hair and chemical shifts of the cursor position when the mouse is moved over the spectrum. This is a useful function when the fields are not shown, not in cursor mode (default mode), or when chemical shift of a peak without moving the left cursor is required while in the cursor mode.
Show Axis	Show scale of the axis.
Show frame border	Check the box to display a box around the frame. Clear the box to display the four corners of the selected frame as <i>hot spots</i> for resizing. No border or corner will be displayed if a frame is not selected. An empty frame is not visible until it is selected.

 Table 16
 Frame vertical panel options (continued)

Frame vertical panel

Inset frame buttons

The buttons delete one or all inset frames and restore the default frame to full size.

Button	Function
Delete Inset	Delete the selected inset.
Delete all	Delete all inset frames.
Full size	Restore the default frame to its full size.

Display check boxes

The check boxes control optional display features.

Check box	Function	
Cross hair	Display cross hair and chemical shifts of the cursor position when the mouse is moved over the spectrum. A useful function when the fields are not shown, not in cursor mode (default mode), or when chemical shift of a peak without moving the left cursor is required while in the cursor mode.	
Fields	Display cr, delta, vp etc fields at the bottom of the viewport.	
Axis	Show scale of the axis.	
Show frame border	Check the box to display a box around the frame. Un-check the box to display the four corners of the selected frame as <i>hot spots</i> for resizing. No border or corner will be displayed if a frame is not selected. An empty frame is not visible until it is selected.	

Viewport vertical panel

The Viewport vertical panel is used to set up and customize the display of viewports.

ProcessPlot ArrayedSpectra			
Protocols QuickS	ubmit Frame Viewport		
Viewport	Ф ×		
Number of Viewp	orts		
01 02 02 04 05 05 07 08 00			
0102 010	10100070003		
Viewports			
Select Workspace	Label Hide Active		
✓ 1 7 039-0	005-PROTON_01 1		
✓ 2 1 2	2 0		
⊮ 3 2 3	3 0		
	_		
Layout			
🗲 Auto			
	Overlay viewports		
UIII Vertical			
Color by viewport	Show crosshair		
Sync cursor	Show fields		
Sync axis	Show axis		

Figure 13 Viewport vertical panel

Viewport vertical panel

ltem	Description	
Number of viewports	Used to select the number of viewports to display. Available viewports is set in Viewports settings window.	
Viewports	Select — When selected, displays that viewport	
	Color — Select color to display data in viewport	
	Workspace — Workspace number (also experiment number shown on upper left corner of viewport)	
	Label — File name or user-defined label	
	Hide — Hide selected viewport	
	Active — Select to make viewport active	
Viewport layout	— Auto mode, let VnmrJ arrange the viewports in an optimized row-by-column matrix	
	Stack viewports horizontally	
	— Arrange viewports vertically	
Overlay Viewports	Overlays viewports	
	Stack spectra — show spectra with an offset	
	X — offset in X axis for stacked spectra	
	Y — offset in Y axis for stacked spectra	
Color by viewport	Turns on the color option so you can select to display viewports in different colors.	
Sync Cursor	Links and synchronizes the cursors and crosshairs in multiple viewports.	
Sync Axis	Links and synchronizes axes in multiple viewports. Axis is synchronized to the current active viewport.	
Show crosshair	Displays cross hair and chemical shifts of the cursor position when mouse is moved over the spectrum. This is a useful function when the fields are not shown, not in cursor mode (default mode), or chemical shift of a peak without moving the left cursor is required while in the cursor mode.	

Table 17 Viewport vertical panel options

ltem	Desc	ription			
Show fields	Shov	vs information fie	lds at the botto	m of the active v	iewport:
٧s	sp(ppm)	wp(ppm)	first	last	step
111.7	35.78	65.00	1	4	1
Show axis	Displ	ays axes in the vi	ewports		

 Table 17
 Viewport vertical panel options

Contour

The contour sub-panel, Figure 14, appears exclusively for the active viewport with 2D data loaded and displayed in contour mode (dpcon).

Contour		Contour		
Viewport 3		Viewport 3		
Contour levels:	+	Contour levels:	4.	
Spacing factor:	2	Spacing factor:	2	
Positive contour		Positive contour	bise	-
R Negative contour		Regative contour	red	-
Multi color contos	irs AutoScale		Auto	oScale
Color by vi	ewport not selected	Color by view	vport s	electe

Figure 14 Contour controls

Table 18	Contour nanel
	oontour punci

Control	Description
Contour levels	Enter a number of contours between 4 and 32 in the text field.
Spacing factor	Enter a number in the text field to specify the spacing between contours. A number between 1.1 and 2 is recommended.
Positive contour	Select this check box to show positive contours using the default color red.
Negative contour	Select this check box to show negative contours using the default color blue.
Color dropdown	Select a color from the menu to use a color other then the default color.
	Each contour has a color dropdown menu.

Viewport vertical panel

Table 18	Contour panel (continued)

Control	Description
Multi color contours	Select this option to use the colors defined in Display Option.
	If you select the Color by Viewport box, options are not displayed,
AutoScale	Automatically scale the spectrum by clicking.

ProcessPlot vertical panel

The ProcessPlot vertical panel provides quick access to commonly-used options for processing, on-screen display, and plotting. Options in the panel vary depending on current data. Buttons within the panel enable you to open parameter panels that contain more options.

ProcessPlot			
Process			
Transform all	Phase zero order		
Transform FID # 1			
Weighting			
none	▼ Interactive		
✓ Transform size Acquired points	64k 💌 16,384		
More processi	ng – parameter pages		
Display			
Vertical scale			
Autoscale	Arrayed spectra panel		
+ -			
Reference	Axis Display mode		
By solvent	🔾 Hertz 🛛 🖲 phased		
By TMS	PPM O abs value		
Cancel	○ kHz ○ power		
More display - parameter pages			
Plot			
Aut	o plot page		
Auto	Auto plot preview		
Print screen			
More plotting - parameter pages			

Figure 15 ProcessPlot vertical panel for 1D

ProcessPlot vertical panel

Option	Description
Process	
Transform all	Performs a Fourier transform for all the displayed data.
Phase zero order	Performs a zero order phase correction.
Transform FID #	Select FID # to transform.
Weighting	Select the weighting to be applied to the transform.
Interactive	Select to enter interactive weighting mode.
Transform size	Opens a menu where you can select the number of points to be Fourier transformed (fn).
More processing - parameter pages	Opens the Default page in the Process parameter panel tab for more processing options
Display	
Autoscale	Automatically scales the display vertically.
+/-	Click + or - to increase or decrease the vertical scale.
Arrayed spectra panel	Opens the ArrayedSpectra panel where you can set up display of spectra and FID arrays. See "ArrayedSpectra vertical panel" on page 52.
Reference	By solvent - Reference the spectrum for selected solvent. By TMS - Reference the spectrum to a TMS line.
	Cancel - Clears the reference line by removing any spectral referencing present, and turns off referencing.
Axis	Select the desired y-axis units: Hertz, ppm, kHz
Display mode	Select the desired display mode: phased, absolute value, or power
More display - parameter pages	Opens the Display page in the Process parameter panel tab for more display options
Plot	
Auto plot page	Executes the plot macro; then the resetplotter macro.

Table 19 Options in the ProcessPlot vertical panel

Option	Description
Auto plot preview	Opens the Plot View popup and displays the plot in Adobe Reader. Use the Plot View popup to save the plot to a file, send to a plotter, or send to an e-mail address.
Print screen	Opens the Print Screen dialog box, where you can set up and print the VnmrJ window or viewport. See "Saving and Printing a Graphics File" on page 182.
More plotting - parameter pages	Opens the Plot page in the Process parameter panel tab for more display options.

 Table 19
 Options in the ProcessPlot vertical panel

ArrayedSpectra vertical panel

ArrayedSpectra vertical panel

The ArrayedSpectra vertical tab contains parameters for displaying and plotting spectra and FID arrays. This procedure applies equally to the display and plotting of both spectra and FID arrays.

ArrayedSpectra	2	Д
Show		Misc
O Spectra	FIDs	Transform
		Absolute 👻
Horizontally	<u>ш</u> •	Drift correct
Vertically		Show scale
Auto	_ 0	Whitewash
Custom	🔀 🔍	Color traces
Display 1D	<mark>.ال</mark>	Redisplay
Numbers	#	Plot page
Values		Plot preview
Choice of va	lues	
Start at #		Reset values
Stop at #		Deast all
Step every		Reset all
Max. #		
Chart dimen	sions	
Horiz. width	250.0	250 ±1
Horiz, pos.	0.0	0 ±1
Vert. height	106.2	106 ±1
Vert. pos.	0.0	0 ±1
Numbers		
Style	🗌 Flip	💌
Horizontal		0 ±1
Vertical		0 ±1
Offsets		
Horizontal	-31.44	_31 ±1
Vertical	0	0 ±1
Cutoff	200.00	200 ±1

Figure 16 ArrayedSpectra vertical panel

Option	Description	
Show		
Spectra or FIDs	Selects to show either spectra or FIDs	
Horizontally	Shows the spectra side-by-side	
Vertically	Aligns the spectra one above another	
Auto	Depends on the previously chosen display mode:	
	 If the previous mode showed the spectra full screen (vertical mode or showing only a single 1D) spectra are aligned vertically, and the vertical offset is chosen such that all spectra together cover the entire vertical space. If the previous mode was horizontal, a vertical offset is added to show the spectra along a diagonal. 	
Custom	Takes over the display properties of either horizontal, vertical, or auto modes but allows the choice of horizontal and vertical offsets.	
Display 1D	Click the icon to show a single spectrum/FID and use the toolbox to manipulate and zoom.	
Numbers	When selected, turns on numbering of the array elements displayed.	
Values	When selected, turns on display of values for the array elements displayed.	
Misc		
Transform	Fourier transform the current FID data	
Drift correct	Apply drift correction (corresponds to "dc" command) to all subspectra of the array.	
Show scale	Switch on or off a scale below the first spectrum or FID of the array.	

 Table 20
 Options in the ArrayedSpectra vertical panel

ArrayedSpectra vertical panel

Option	Description	
Whitewash	Aligns the spectra one above another as in the vertical mode, but this mode shows spectra behind each other, avoiding overprinting. Horizontal and vertical offsets can be adjusted.	
Color traces		
Redisplay	Refresh the screen.	
Plot Page	Send the current array display to the current plotter. Settings on the Plot parameter panel for parameter printing are used. Plotting from the ArrayedSpectra vertical panel does not plot integrals, integral values, and peak frequencies.	
Plot Preview	Plot the array to a PDF file and open Acrobat reader with the PDF of the current array. Settings on the Plot parameter panel for parameter printing are used. Plotting from the ArrayedSpectra vertical panel does not plot integrals, integral values, and peak frequencies.	
Choice of values		
Start at #	The first element of the array to display	
Stop at #	The last element of the array to display	
Step every	The element between the beginning and end of the array to display.	
Max #	Maximum number of elements to display.	
Reset values	Resets just the values to default.	
Reset all	Resets all to defaults.	
Chart dimensions	Enter the desired values, then adjust the positions as needed using the buttons next to each field. Right mouse click on the button to increase the value or left mouse click on the button to decrease the value the increment shown on the left side of the button.	
Horiz. width	Enter the horizontal width for the chart.	

Table 20 Options in the ArrayedSpectra vertical panel (continued)

Option	Description
Horiz. pos.	Enter the horizontal position for the chart.
Vert. height	Enter the vertical height for the chart.
Vert. pos.	Enter the vertical position for the chart.
Numbers	
Style	Flip — when selected, rotates the numbers 90 degrees counter-clockwise Drop-down menu — Used to select the position of the numbers. Select Custom to specify a horizontal and vertical positioning of the number with respect to the spectrum. Use the horizontal and vertical fields to type the custom positions.
Horizontal	When using Custom style, lets you enter custom horizontal position.
Vertical	When using Custom style, lets you enter custom vertical position.
Offsets	Enabled only for vertical, whitewash, or custom array mode.
Horizontal	Enter horizontal offset. (Note: the horizontal width must be smaller than the screen width in order to apply any horizontal offset.) Use the button to the right of the field to adjust the position. Right mouse click on the button to increase the value or left mouse click on the button to decrease the value the increment shown on the left side of the button.
Vertical	Enter vertical offset. Use the button to the right of the field to adjust the position.Right mouse click on the button to increase the value or left mouse click on the button to decrease the value the increment shown on the left side of the button.

 Table 20
 Options in the ArrayedSpectra vertical panel (continued)

ArrayedSpectra vertical panel

Option	Description
Current value Middle mouse button cl	Increment applied to the current setting value. utton click to set the increment to 1, 10 or 100
Cutoff	Used to avoid overlapping large lines that may reach into the spectra above.

Table 20 Options in the ArrayedSpectra vertical panel (continued)

Parameter Panel

The Parameter Panel shows the pulse sequence, context-specific information, menus, and text entry. The panels under the Acquire and Process tabs change depending on the current pulse-sequence. Parameter Panel information is displayed for the current experiment.

Figure 17 Parameter Panel

Each pane can be resized, reduced to a tab, or closed. Setup, acquire, or process NMR data using the point and click feature of the interface. There are three tabs labeled Start, Acquire, and Process below the graphics window. The top page on each tab displays commonly used functions. Lower pages display detailed functions. Buttons (Action Bar) to the right of the tabs represent tab-specific actions and differ with each tab. The interface can also be accessed using the command line above the Graphics Canvas.

VnmrJ Menus

VnmrJ has an integrated set of tools designed to acquire a series of one and two-dimensional data sets from a library of pulse sequences for any given sample. Access the sophisticated experiments for routine use in a fully automated environment.

Standard menu items are displayed at the top of the VnmrJ window. This section lists menus in alphabetical order rather than in the order they appear in the menu.

Acquisition Menu

The Acquisition menu provides a convenient non-command line access to a number of core VnmrJ commands such as go, ga, or au. The menu option, Parameter Arrays, facilitates the creation of parameter arrays.

<u>A</u> cquisition	Automation Pro	
Parameter Arrays		
findz0	-	
Do Gradient	Shimming 🕨	
Acquire [go]	
Acquire/exe	ecute w exp	
Acquire/Process		
Acquire/Process/Save		
Acquire/Process/Plot		
Acquire/Pro	cess/Plot/Save	
Setup Hardv	vare [su]	
Set Shims In	to Hardware	
Abort Acqui	sition	

Figure 18 Acquisition menu

ltem	Description	
Parameter Arrays	Opens the Array Parameter window, in which you can create and edit parameter arrays.	
findZ0	Find Z0 for locking.	
Do Gradient Shimming	Opens the gradient shimming menu where you select the gradient map and execute gradient shimming.	

 Table 21
 Acquisition menu

Automation Menu

The Automation Menu provides access to automation start, stop, restart and reset controls not generally used during ordinary sample submission and not accessible from the Study Queue. It also provides access to archive queues and automation logs.

Automation <u>Process</u> <u>T</u> ools <u>H</u> elp		
Automation Queue		
Automation Run (autodir)		
Automation File (globalenter)		
Tray Actions		
Tray archives		
Submit Current Parameters		
Automation Controls	×	
Foreground Acquisition	×	
Show Current Log		
Show Realtime Log		
ExpressSubmit for sample-in-magnet		

Figure 19 Automation menu

Automation Menu

Table 22 Automation menu

Item	Description	
Automation Queue	Select to display Automation Queue.	
Automation Run (autodir)	New Study Continue Study New Automation Run	
	Start a new study or continue an existing study from an existing automation run. Initiate a new automation run (often done at the start of the day).	
Automation File (globalenter)	New Study New Automation File Show AutoFile Tray Submit to Acquisition	
	Edit, create, display and submit to acquisition the "globalenter" version of a Study Queue.	
Tray Actions	Show Tray Hide Tray Show All Studies Automation Run Status Show Study from a Location Recall and resubmit Study from a Location Recall and edit Study from a Location Delete pending Study from a Location	
	Provides functionality that is also available on the Study Queue controls or the right-click menu on the tray locations.	
Tray Archives	Tray archives allows the user to browse completed automation runs or automation files from previous dates.	
Submit Current Parameters	Automation Run as a study to DayQ Automation Run as a study to NightQ Automation File as a study to DayQ Automation File as a study to NightQ	
	Use to manually build any desired experiment in the current workspace and to submit to an automation queue, both day and night.	

ltem	Description		
Foreground Acquisition	Allows user to pause after current acquisition, pause immediately, or resume paused study.		
Automation Controls (visible when autosampler is configured)	Pause after current Study Pause after current Acquisition	To pause the automation run, manually run an emergency sample, resume the automation run, or to pause a run to fill the magnet with cryogens.	
	Stop-Save-Resume	Stops the running experiment, process or plot, or save to move on to the next experiment in the chain or queue.	
		For example, if a 4 hour experiment were running in automation and after 30 minutes it was processed and nearly complete, then this action allows you to choose a rational action at that time.	
	Stop-Discard-Resume	Stops the running experiment and move on to the next item on the list.	
	Stop-Save and Stop-Discard	Functions exactly as the submenus described above except that the queue is not resumed until you select Resume Automation from this submenu.	
	Pause NOW	Allows you to pause the experiment immediately.	
	Pause at scheduled time	Allows the administrator of the account to define in advance an exact time for the automation run to be paused along with a time for automation to resume.	
	Resume Automation	Resumes any paused automation run.	
	Abort Automation	Stops automation run.	
		During the time of pausing you can use the interface to submit more samples and to acquire NMR data manually. You can also allow time for cryogen fills and the magnet time to recover. The automation run can resume automatically.	

Table 22 Automation menu (continued)

Automation Menu

Table 22	Automation menu	(continued)	
----------	-----------------	-------------	--

ltem	Description	
Background Acquisition (visible when no autosampler is configured)	New background run	Submits a new acquisition run to background.
	Show all studies	Shows status of studies in the Study Queue.
	Pause after current Study Pause after current Acquisition	To pause the automation run, manually run an emergency sample, resume the automation run, or to pause a run to fill the magnet with cryogens.
	Stop-Save-Resume	Stops the running experiment, process or plot, or save to move on to the next experiment in the chain or queue.
		For example, if a 4 hour experiment were running and after 30 minutes it was processed and nearly complete, then this action allows you to choose a rational action at that time.
	Stop-Discard-Resume	Stops the running experiment and move on to the next item on the list.
	Stop-Save and Stop-Discard	Functions exactly as the submenus described above except that the queue is not resumed until you select Resume Automation from this submenu.
	Pause NOW	Allows you to pause the experiment immediately.
	Pause at scheduled time	Allows the administrator of the account to define in advance an exact time for the acquisition run to be paused along with a time for acquisition to resume.
	Resume Acquisition	Resumes any paused acquisition run.
	Abort Acquisition	Stops acquisition run.
Show Current Log	Displays the current compact acquisition log in a text editor window.	
Show Realtime Log	Displays a compact realtime acquisition log in a popup window.	
ExpressSubmit for sample-in-magnet	Submits default experiment (defined in preferences) to the sample in the magnet.	

Edit Menu

The available commands and options depend on the rights assigned by the VnmrJ Administrator.

Each of the following menu options opens a dialogue that prompts the user to enter the source and destination workspaces of the items. The command and parameter reference refers to these tools as mp, mf, mt, md, and mz. For more information on commands, parameters, and macros, see the *VmnrJ Command and Parameter Reference Guide*.

Figure 20 Edit menu

Edit Menu

Table 23	Edit menu
	Lait monu

ltem	Description
Move Parameters	Opens the Move Parameters window that allows parameters to be moved from one experiment number to another.
Move FID	Opens the Move FID window to move an FID from one experiment number to another.
Move Text	Opens the Move Text window to move text from one experiment number / workspace to another.
Move Display parameters	Opens the Move Display Parameters window to move display parameters from one experiment number to another.
Move Integral Resets	Opens the Move Integral Resets window to move integral resets from one experiment number to another.
New Pulse Shapes (Pbox)	Opens the powerful Pbox tool for the creation of pulses and decoupling shapes.
View Pulse Shapes	Opens the Pulse tool, a Bloch simulator for viewing the effects of any shaped pulse.
New/Edit Macro	Opens a macro directly in a text editor.
Toolbar	Enables the addition of a button to the top bar of the user interface with a user-specific function.
Display Options	Opens a graphical interface from which you can modify and save/recall the colors used in every tool used in VnmrJ.
Edit Config Profile	Allows modification of what experiments are shown in the Experiment Selector tool.
	The starting point is based on the profile assigned to them by the VnmrJ administrator
Edit Experiment Selector	Enables you to change the way a protocol is displayed in the Experiment Selector. You can add or edit folders, change the order of display, or change displayed names This information is saved separately for each operator.
Parameter Pages	Enables you to build/modify Parameter pages.

ltem	Description	
ToolPanel Tabs	Opens the Tool Panel Editor, where you can configure what vertical panels are available to view, and move their position in the vertical panel pane. You can also save the configuration in a file.	
Viewports	Enables you to toggle viewports.	
	It is a tool to view multiple workspaces simultaneously, on or off.	
Applications	Enables you to define an account with collections of Applications Directories.	
	An Applications Directory is a specific directory path that could contain macros, parameter, templates, and so on. For example, the AutoTest facility can be toggled on or off with this menu item.	
Operator Preferences	Enables the account administrator to allow the individual operators to manage their own preferences for the interface to automatically preset items as email address, preferred solvent, plotter, or notebook.	
	In this example Operator Preferences is not active because in the Preferences menu, User Remembrance is not enabled. The list of choices for this list is completely general and is defined by the account administrator.	
Preferences	Enables the account administrator to define items such as data saving template and default behaviors for plotting, automatic creation of pdf plot files, and a number of operator privileges.	
	This menu item is discussed in detail in "VnmrJ Preferences" on page 103.	
System Settings	Opens a graphics tool with which system options are defined.	

Table 23Edit menu	(continued)
-------------------	-------------

Experiments Menu

Unlike the Experiments Selector which can be configured by both the administrators and individual operators in terms of content, the Experiments menu shows the full selection of experiments accessible for the account. Use the Experiment Selector tool to perform automation submissions.

E <u>x</u> periments	<u>A</u> cquisition	Automation	<u>P</u> rocess	To
Setup BioPack	Experiment			
Activate BioPa	ack			•
Water Suppre	ssion Experir	ments		
Protein Backb	one Assignm	ient Experime	nts	•
Protein C13/I	V15 Experime	ents		
RNA/DNA Exp	periments			•
C13 Observe	Experiments			•
Cotors Marco Dave				
Droton	ameters for			
Carbon				
Elupring				
Phoenhorus				
Other Nucleu	e			
H1 Palavation	2			
Convert Current	Parameters To	Do		
Standard 1D	Farameters to	D0		
Solvent Supp	rassian – Sala	oct Poaks		1
Homonuclear	Correlations	CUPEARS		1
I-Correlation	e			j,
Indirect Heter	onuclear Cor	relations (Bas	ic)	
Indirect Heter	onuclear Cor	relations (Mo	re)	
Indirect Heter	onuclear CBI	SIS2		
Selective Exci	tation			•
X-H Multiplici	ity Determina	tion		•
Heteronuclea	r Correlation	s		
13C-13C Cor	relations			•
19F-1H Expe	riments			•
Relaxation M	easurements			×
Setup New Par	ameters To Do			
Standard 1D	Experiments			
1H Observe –	Suppress De	fined Solvents	5	
1H-1H Homonuclear Correlations				
J-Correlation	I–Correlations			•
1H–13C Indirect Heteronuclear Correlations (Basic)			c) 🕨	
1H-13C Indir	ect Heteronu	clear Correlat	ions (Mor	e) 🕨

Figure 21 Experiments menu

Experiments Menu

ltem	Description
Setup BioPack Experiment	(Only available when BioPack option is enabled.) For information on using BioPack, see the <i>Agilent VnmrJ 4 BioPack</i> <i>Users Guide</i> .
Activate BioPack	(Only available when BioPack option is enabled.) For information on using BioPack, see the <i>Agilent VnmrJ 4 BioPack</i> <i>Users Guide</i> .
Setup New Parameters for	Executes a simple retrieval of standard parameters for the selected experiment and also completely clears all sample tags (parameters used to define a sample's identity).This is a clean slate.
Convert Current Parameters To Do	Sets up the selected requested experiments but retains all sample tags.
	If you choose to use the Experiment selector without first requesting New Study by the Study Queue controls the result is the same as this conversion.
	The conversion of parameters with retention of sample identification parameters is the modality of "more on this sample." The acquired data is auto saved and added to the pre-existing data acquired the current study
Setup New Parameters To Do	Allows a simple retrieval of default parameters for all 2D and a few 1D experiments, according to your need.
Hadamard Experiments	Provides access to all of the Hadamard Fast methods 2D experiments.
Solid-State Experiments	Allows access to all routine Solids NMR experiments

Table 24 Experiments menu

File Menu

<u>F</u> ile	<u>E</u> dit	<u>V</u> iew	E <u>x</u> periments
New	New Workspace		
Join a	a NEV	Work	space
Oper	ı		
Save	As		
Auto	Save		
Print	ers		
Print Screen			
Auto Plot			
Creat	te a P	lot Des	ign
Review PDF Plots			
Switch Operators			
Exit \	/nmr_	J	

Figure 22 File menu

ltem	Description
New Workspace	Creates a new workspace for use. Workspaces are called exp1, exp2, and so on, up to exp9999. A workspace is a directory where data is acquired or processed.
Join a NEW Workspace	Creates a new workspace and then actively joins the workspace in the interface.
	Following is an example of the command line equivalent:
	cexp(7) jexp7
	will create a new workspace and join exp7.
Open	Accesses the Open window (also called the Experiment Selector Editor) where you can browse for and open files.
Save As	Opens the File Browser window where you can specify the location and name for saving the data in the current workspace.

File Menu

ltem	Description	
Auto Save	Saves the data that has been acquired in an experiment workspace using the template set up in User Preferences. See Templates Tab.	
	The location and file name are automatically set based upon the values defined in the Preferences Templates tool.	
Printers	Allows you to select a valid printer and/or plotter for output.	
Print Screen	Allows you to print the current screen.	
Auto Plot	Calls the appropriate automatic plotting routine for any type of data in the current workspace.	
Create a Plot Design	Opens Plot Designer to create plot designs or output.	
Review PDF Plots	Allows you to review the PDF plot in Adobe Acrobat. You can set the user preference to create a pdf plot automatically for data that has been acquired of a given sample.	
Switch Operators	Allows the current operator of the system to logout during automation thereby freeing the system for use by another operator.	
Exit VnmrJ	Executes an exit of the VnmrJ program. It is equivalent to typing $exit$ in the command line.	

Table 25 File menu (continued)

Help Menu

The Help menu provides links to help and reference information.

<u>H</u> elp	
Ν	Ianuals
S	pinsights Community Help Site
F	lelp Overlay
× ×	bout VnmrJ

Figure 23 Help menu

Table 26 Help menu

ltem	Description
Manuals	Opens online help where you can view manuals in html or PDF format.
Spinsights Community Help Site	Opens the Agilent Spinsights home page, where you can find resources such as community forums, downloads, and news.
Help Overlay	Opens the Help Overlay, which gives you a visual overview of the VnmrJ user interface.
About VnmrJ	Opens information about the VnmrJ 4 software.

Process Menu

The Process menu provides tools for common tasks as an alternative to the command line

Process Menu

<u>P</u> rocess	<u>T</u> ools	<u>H</u> elp	
Process and Display 1D			
Full Proc	ess		
Drift Correct Spectrum			
Automatically Set Integrals			
Interactive Baseline Correct			
Baseline Correct			
Set Spectral Width between Cur			
Set Transmitter at Cursor			
Add and Subtract 1D Data			
Full Process 2D			
Process 2D (Individual Steps)			
Analyze			
CRAFT NMR			

Figure 24 Process menu

	-
Table 27	Process menu

ltem	Description	
Process and Display 1D	Process and display 1D data.	
Full Process	Process and display 1D data using the processing associated with the protocol.	
Drift Correct Spectrum	Apply drift correction along both axes of a 2D data set.	
Automatically Set Integrals	Automatically find and set integral regions.	
Baseline Correct	Apply baseline correction.	
Set Spectral Width between Cursors	Mark new spectral width on the graphics screen using the left and right cursors and set the new spectral width.	
Set Transmitter at Cursor	Mark new transmitter location on the graphics screen and set the transmitter.	
Add and Subtract 1D Data	Results are shown displayed in current when second spectrum is selected.	
Full Process 2D	Process and display 2D data using the processing and display parameters associated with the protocol.	
ltem	Description	
-------------------------------	--	--
Process 2D (Individual Steps)	pps) Step by step processing of 2D data.	
Analyze	Use to analyze COSY correlations, spin simulation, deconvolution, and regression.	
CRAFT NMR	Opens the CRAFT application, (Complete Reduction to Amplitude Frequency Table). CRAFT lets you convert an FID or a collection of FIDs into the component NMR signals in the form of a chemicalshift (frequency) / amplitude / linewidth table. For more information, see the <i>VnmrJ CRAFT User Guide</i> .	

 Table 27
 Process menu (continued)

Tools Menu

Tools Menu

<u>T</u> ools	<u>H</u> elp	
VeriPu	ilse	
Study	Clones	٠
Study	Clusters	۲
Study	Queue Actions	•
Works	pace Information	
Standa	ard Calibration Experiments	•
Updat	e Locator	٠
Impor	t Files to Locator	
Save (Sustom Locator Statement	
Delete	e Custom Locator Statement	
Molec	ular Structures	۲
Chang	e Operator Password	
Perso	na Manager	
Brows	er	
Locato)r	
Option	nal Files to Save With FID	
View (Eryogens	
Conve	rt Pre-VnmrJ 3.0 Data	
Select Reference Standard		

Figure 25 Tools menu

Table 28Tools menu

ltem	Description
VeriPulse	If VeriPulse is enabled, opens the VeriPulse window that enables you to perform automated testing and calibration. See the <i>Agilent NMR</i> <i>System Calibrations User Guide</i> for information.
Study Clones	See "Study Clones submenu" on page 77

Tools Menu

ltem	Description
Study Clusters	Opens menus with commands that let you create study clusters. A study cluster lets you treat a set of FIDs (from different studies) as a single group. For details, see the <i>VnmrJ</i> <i>Spectroscopy User Guide</i> .
Study Queue Actions	Displays two menu options: Refresh Study Queue—Updates the study information in the Study Queue window. Clear Study Queue—Clears the Study Queue window.
Workspace Information	Opens a window that displays the status of all workspace ongoing processes.
Probe Tuning	May display two menu options: Auto Tune Probe—Opens the ProTune auto-tuning dialog window. Appears only if ProTune accessory is installed and configured. Manually Tune Probe—Opens the "mtune" panel.
Enforce ProbeID	For installed probes with ProbeID, once ProbeID is configured in System Configuration, this selection enables the ProbeID function. ProbeID prepopulates calibration target values appropriate for the current probe and ensures that the probe file selected in the Probe popup matches the probe that is currently attached to the system.
Disable ProbelD	Disables ProbeID functions.
Standard Calibration Experiments	See "Standard Calibration Experiments submenu" on page 82.
Update Locator	Opens a submenu that provides choices for updating the different parts of the Locator database.

Table 28 Tools menu (continued)
------------------------------	------------

Tools Menu

ltem	Description
Import Files to Locator	Opens a win Locator data

 Table 28
 Tools menu (continued)

Import Files to Locator	Opens a window for importing files to the Locator database.
Save Custom Locator Statement	Opens a window to save custom Locator statements.
Delete Custom Locator Statement	Opens a window for deleting custom Locator statements.
Molecular Structures	Display all—Display all molecular structures. Plot all—Plot all molecular structures.
	JChempaint—Opens the open source application JChempaint (molecular drawing program) in a separate window. Select the Help menu for an online manual.
	Jmol—Opens the open source application Jmol (3D molecular viewing program) in a separate window. Select the Help menu for an online manual.
Change Operator Password	Opens a window for changing operator passwords. If the operator has an operating system login account, the password will also be changed.
Persona Manager	Opens the Persona Manager, where the administrator adds and configures system operators and personas.
Browser	Opens a file browser window.
Locator	Opens a Locator window.
Optional Files to Save With FID	Choose additional files that can be automatically saved in the .fid directory.
Sample in Magnet	Tool to command the sample changer to change samples and to assign the sample position currently in the magnet.

ltem	Description
View Cryogens	Opens the CryoMonitor pop-up where you can read the current levels of cryogens and see the level history. This option requires that a cryogen monitor is installed and configured in system configuration.
Convert pre-VnmrJ 3.0 data	Tool to convert pre-VnmrJ 3 data for use in VnmrJ 3.x.
Select Reference Standard	Choose the reference compounds used for chemical shift referencing.

Table 28 T	ools menu	(continued)
------------	-----------	-------------

Study Clones submenu

The Study Clones submenu is a group of convenience utilities.

A Study Clone is a set of experiments built in the Study Queue with any desired parameter customizations. This set of experiments is automatically represented as a new button in the Experiment Selector. After creation, the user can repeat the exact set of experiments simply by selecting that button either in or out of automation and with or without a sample changer. One use of a Study Clone is to set the desired parameters for a very fast PROTON spectrum, such as nt=1 ss=0 gain=4 and Clone current Exp with a button label Fast_H. It might also be useful to set parameters for a slow quantitative PROTON experiment such as d1=60 pw(90) ss=2 nt=8 and Clone current Exp with a label as Quant_H. The user can use the Study clones to recall complex sets of multidimensional experiments or to simply establish a convenience button for commonly done tasks. Clones from other clones can also be created by adding more experiments in any desired fashion.

Tools Menu

Tools Help	
Study Clones	Clone a New Study
Study Clusters	Clone Current Study
Study Queue Actions	Clone Current Experiment
Workspace Information	Clone Location Queue
Probe Tuning	Command and Protocol Buttons
Standard Calibration Experiments	Edit Parlib
Update Locator	Show Library
Import Files to Locator	
Save Custom Locator Statement	
Delete Custom Locator Statement	
Molecular Structures	•
Figure 26 Study Clones submenu	

Table 29	Study	Clones submenu
----------	-------	-----------------------

ltem	Description
Clone New Study	Enters the Study Queue mode to create a new Study that shall be saved as a new clone. Presents a " Save Study " button on the Study Queue window to save the new Study.
Clone Current Study	Use to assign a name for the button associated with a study of a list of experiments assembled in the Study Queue.
Clone Current Experiment	Allows user to assign a name for the button option associated with the currently loaded or displayed experiment. For example, use this option if an FID from a previous study is retrieved in the current workspace, and the user wants to create a clone of the single experiment that had been acquired on that sample.
Clone Location Queue	Allows creation of a button associated with the study completed for the selected tray sample location.

Table 29 Study Clones submenu (continued)

Description

Command and Protocol Buttons

ltem

Use the Protocols menu option to devise a method to create a button to run a macro to setup an experiment.

My Library	:
	Show Details Delete
Type	Experiment Command
Name	CARBON
Tabname	std1D 💌 Select OR
	std1D Enter
MenuLevel	
Submenu	
Label	CARBON
Action	Execute CARBON
	Recall current parameters (rtp)
Req. Exp	
ExpTime	8 min, 44 sec
AppDir	Home account 👻
	AutoPrompt customization
	Make protocol
	AutoPrompt customization Make protocol

In the Type field, select either Experiment or Command.

If **Command** is selected, a button option is created to call a macro that, for example, analyzes the lineshape. Based on the result, the user can decide to call a group of non-spin shim routines. A Study Clone could then be composed of a PROTON experiment customized appropriately for running 1H lineshape, followed by the command protocol to analyze lineshape in the Study Clone. This Study clone can be submitted at any time and automates the task of refining shims.

Tools Menu

ltem	Description
Edit Parlib	Enables users to view the details of any valid VnmrJ protocol. Edit/Make parlib can also create new protocols based on the contents of the parameter set in the current workspace.
	Use the Study Clones tool to create a modified version of an already existing protocol, such as PROTON or CARBON experiments with specific parameters for a quick or long experiment. Do not use Edit/Make Parlib. In order to properly utilize the tool, the user must have a basic understanding of the concept of modules and locked parameters (Plock).
	The following is an example view of Edit/Make parlib for a band-selected 2D experiment.
	Custom Parlik (Ever (Ever to belso CAD)
	cuscon rank/cap. (cap type, bsh50cAb)

Table 29 Study Clones submenu (continued)

<u>la</u>	Edit/Make Parlib	X
Custom Parlib/Exp: (ExpType: bsHSQCAD)	
Name	bsHSQCAD	
apptype:	hetero2D	
modules:	esat wet gradient Dch_adiabatic dpfgse impress sel2D	
Lock parameters	dm ni nt seltype shape180	
By default, start with	HSQCAD gHSQCAD HSQC gHSQC wet1D PRESAT PROT	
	(Queued acquisition only!)	
Customization:		
if (satmode = 'y) then satmode = 'y/ endif User Customization:		
(macro format – overrides a	ll defaults)	
Save/upda	te Remove	
Edit	ndo Close Abandon	

Table 29	Study Clones	submenu	(continued)	1
----------	--------------	---------	-------------	---

ltem	Description
	Both the apptype and the list of modules are different from the PROTON protocol. The user can query the values and modules for the apptype parameter by using the apptype? and modules? commands before creating a new protocol from a pulse sequence and parameter set that originated from outside VnmrJ, such as the user library. Assign the value for modules to the Lock parameters list and add any parameter needed to be kept at setup time.
	In the above PROTON experiment, basic protocols include the following key concepts:
	 Name—Displays the name of the set parameter and the protocol's button. apptype—Displays a generic helper macro name for setting up a group of protocols. In VnmrJ apptype is optional. Common apptypes are std1D, homo2D, hetero2D, and lstd1Dmodules. (The names for the little min-parameter sets that are combined to create the existing parameter set.) Module—Displays a module and all of the values for the parameters in that module, type on the command line module ('popup','modulename'), for example module ('popup','presat'). Default Starting Experiment—Define a default experiment as a starting point to morph the default experiment into the desired experiment. Type REQexp? from the command line to query the value for the default starting experiment. Customization—Shows the contents of the macro name_setup or in the case of this example PROTON_setup. Not editable in this tool but it can be edited in a text editor. User Customization—Creates a macro from the text typed in this field. userprotocolname or for this example userPROTON.
Show Library	Opens a graphical tool to backup then remove old buttons and to review the executable actions of buttons.
Show Library	Opens a graphical tool to backup then remove old buttons and to review the executable actions of buttons.

Tools Menu

Standard Calibration Experiments submenu

Tools Help	_
Study Clones	
Study Clusters	
Study Queue Actions	
Workspace Information	
Probe Tuning	
Standard Calibration Experiments	Probe Protection
Update Locator	Setup qNMR Calibrations
Import Files to Locator	Set Up Gradient Shimming
Save Custom Locator Statement	Set Up 3D Gradient Shimming
Delete Custom Locator Statement	Shim Editor
Molecular Structures	Shim Scheduler
Change Operator Password	Run shim procedure
Persona Manager	Start Autotest
Browser	Autotest Settings
Locator	
Select Optional Files	
View Cryogens	
Convert Pre-VnmrJ 3.0 Data	
Select Reference Standard	

Figure 27 Standard Calibration Experiments submenu

Table 30 Standard Calibration Experiments submenu

ltem	Description
Probe Protection	Opens a window to set up maximum allowed power values for probe protection. See below.
Setup qNMR Calibrations	Setup qNMR Calibrations-Opens a window to calibrate and set up quantitation tools.
Setup Gradient Shimming	Setup Gradient Shimming-Loads the pulse sequence and panels for making a shim map for gradient shimming.
Shim Editor	Opens the Shim Menu Editor, where you set up or change shim menus.

ltem	Description
Shim Scheduler	Opens the Shim Maintenance Scheduler, where you set up and schedule shim service.
Run Shim Procedure	Executes the shim procedure.
Start Autotest	Opens the Auto Test window, where you can configure and run an autotest. For more information, see the <i>Agilent AutoTest User Guide</i> .
Autotest Settings	Opens the Autotest settings window, where you select the parameters for AutoTest. For more information, see the <i>Agilent AutoTest User Guide</i> .
Setup 3D Gradient Shimming	Selection appears only if this option is installed. Loads the pulse sequence and panels for making a 3D shim map for gradient shimming.

Table 30 Standard Calibration Experiments submenu

Probe Protection

Probe Protection settings are global parameters used for sample protection. Recommended settings are to leave power protection on and using default settings.

2	P	robeProtection		N	×
RF Power Limits				R.	-
Setup		RF CH1	RF CH2		
Reset to generic	Nucleus				
Use probe file	Probe protection is	Off 💌	Off 👻		
Use custom values	Max attenuator limit				=
Save custom values	pcal				
	Alarm level				
	Time constant				-
•				•	

Probe Protection

Item	Description
Use probe file	Updates pcal, alarm level, and time constant values using values from the probe.
Use custom values	Use for advanced sample protection.
Save custom values	Saves advanced sample protection values from the interface.
Nucleus	Displays channels with associated nuclei.
Probe protection is:	 On—Default state terminates experiments that are predicted to exceed the alarm level. When this happens, PSG prints the relevant rf channel on line 3 and the error window. Verbose—Same settings as "on" and prints diagnostic messages in process>text. Warn verbose—Alerts when 90% of alarm is reached and terminates when alarm is reached. Warn only (off)—Alerts when 90% of alarm is reached and will not terminate. Off-Will not terminate when the alarm level is reached.
Max. attenuator limit	Displays associated maxattench value for each channel.
pcal	Tpwr level associated with 2 watts of power at the probe.
Alarm level	An energy (power * time) value at which the probe may be damaged or the sample may be overheated.
Time constant	The length of time, typically 5 seconds, for the probe cooling processes.

Table 31 Probe Protection

View Menu

Use this menu to access parts of the interface and restore the interface elements. Close the window by clicking the **Close** button in the upper right hand corner of each window. Access the hardware or graphics toolbars using the Toolbars submenu.

<u>V</u> iew	E <u>×</u> periments	<u>A</u> cquis
Comr	mand Line	
Paran	neter Panel	
Expe	riment Selector	
Expe	riment Selector	Tree
Study	/ Queue	
Proce	ssPlot	
Fram	e	
Quick	Submit	
Viewp	oort	
Cryo		
Array	/edSpectra	
Toolb	ars	•

Figure 28 View menu

Changing Display Colors

Changing Display Colors

Using the Styles and Themes window, you can change the colors used for the display and printing of various items in VnmrJ. To open the Styles and Themes window, click the Display Options icon.

There are four user interface styles available (Default, Classic, Dark and Light), and several look and feel (LAF) choices to customize the interface.

You can also set default colors for drawing 1D and 2D spectral graphics and labels (Display). 1D and 2D spectral drawing have adjustable line thickness for better visibility and report generation. And, when zooming 1D and 2D data, VnmrJ can automatically switch to thicker lines.

The Plot functions let you set up defaults for printing and plotting.

To change the look and feel of the VnmrJ user interface

- 1 On the System Toolbar, click the Display Options icon.
- **2** Select the **UI** button.

S of C Dispia,	Plot	Dafault	-	Save	Delete	Hex.	LAF Vnmri	-
Status Queue	e Messa	ges Hea	adings	Labels a	ind Text	Menus	UIColors	
Status styles								
On (active)	Bold	-	12	SansSerif	-	0085D5	-	
Off (inactive)	Bold	-	12	SansSerif	-	0x666666	-	
Interactive	Bold	•	12	SansSerif	-	0xCC5705	-	
Ready	Bold	-	12	SansSerif	-	B3B3B3	-	
Not present	Plair	1 💌	12	SansSerif	-	darkGray	-	
Customized	Italio		12	SansSerif	-	seaGreen	-	

Figure 29 Styles and Themes window with UI selected

3 From the drop-down menu, select **Default**, **Classic**, **Light** or **Dark** to change the interface color theme. You can also customize further using the tabs and selections available.

To change color options for spectral drawing

- 1 On the System Toolbar, click the Display Options icon.
- **2** Select the **Display** button.

9	Styles and Themes						
🔿 UI 💿 Display	○ Plot Default 💌	Save Delete V Hex V AA					
Canvas DPS	Contours Annotation	1					
Data colors		Lines					
Spectrum 1	0x85D5 💌 🗖	Thickness: 1 to 3 pixels					
Spectrum 2	1293d8 🔻 📘	Factor: 1D 0.2 2D 0.02					
Spectrum 3	24a2dc 💌 🗖						
Spectrum 4	37b0e0 🔻 📘	Size					
Spectrum 5	49bfe4 🔻 📘	Cursors red 🔽 🔳 1					
Spectrum 6	5bcde8 💌 🗖	Crosshairs gold T					
Spectrum 7	6edcec 💌 🗖	Threshold 0xDE7803 T					
Spectrum 8	80eaf0 🔻 🗖						
Spectrum 9	93f9f4 💌 🗖						
Real FID	0x85D5 💌 🔳						
Imaginary FID	0xCC0000 🔻 📕						
Absval FID	0xD60563 🔻 📕						
FID envelope	0xFC6903 🔻 📕						
-Background color	rs						
Canvas	E6E6E6 🔽 🗖	Selection lightGray 🔽 🗖					
Plot box	Oxffffff 🖵 🗖	Border 495268 👻 🗖					

Figure 30 Styles and Themes with Display selected

3 Set the widths of lines used to draw 1D and 2D spectral graphics. There are two Line Thickness settings, used depending on whether the number of points in the spectral region is much smaller than the number of pixels in the spectral drawing canvas. The corresponding

To change color options for plotting

Factor parameter controls when the thicker lines will be used. For example, if the Factor parameter is set to 0.2, the thicker lines will be used whenever the ratio of points to pixels is 0.2 or less. If desired, you can set both Thickness values to the same number, so that line drawing will not change when spectra are zoomed.

4 Use the other tabs and selections to customize the display of pulse sequence (DPS), Contours, and Annotations.

To change color options for plotting

- 1 On the System Toolbar, click the Display Options icon.
- **2** Select the **Plot** button.

	Sty	les and Ther	nes			
🔿 UI ု Display	Plot Default	▼ Save	Delete	🖌 Hex		
Canvas DPS	Contours					
Data colors		Lines				
Spectrum 1	0x7D8297 💌					
Spectrum 2	0x999999 🔻 🛛	Line thick	ness 1	pixels		
Spectrum 3	OxB3B3B3 🔻 🛛					
Spectrum 4	0x666666 🔻	Axis	OxA	BB1C3	-	
Spectrum 5	0x808080 🔻	Integral I	ine 0x8	2CC03	-	
Spectrum 6	0x999999 🔻 🛙	Integral r	nark 0x0	F8703	-	
Spectrum 7	OxB3B3B3 🔻 🛙	Peak ma	rk 0x0	085D5	-	
Spectrum 8	0x666666 🔻	AV peak	box 0x0	00000	-	
Spectrum 9	0x808080 🔻 🛙	PH peak	box 0x0	554A3	-	
Real FID	0x081B2F 🔻					
Imaginary FID	0x495268 🔻					
Absval FID	0xFF0000 🔻					
FID envelope	0xFC6903 🔻					
Background colo	rs					
Canvas	OxBEBEBE -	Selection	0xD3D3I	D3 🔻		
Plot box	0xFFFFFF 💌	□ Border	0x49526	58 👻		

Figure 31 Styles and Themes with Plot selected

3 Set the widths of lines and colors to be used to plot 1D and 2D spectral graphics.

The Line thickness sets the same line thickness to all lines associated with the spectral drawing.

4 Use the other tabs and selections to customize the plotting of pulse sequence (DPS), Contours, and Annotation.

Experiment Selector Editor

Experiment Selector Editor

The Experiment Selector Editor lets you customize how protocols are displayed in the Experiment Selector in the Protocols vertical panel. To open the Experiment Selector Editor, on the main menu click Edit > Edit Experiment Selector.

Figure 32 Experiment Selector Editor

The Experiment Selector has the following capabilities.

Feature	Action
Drag a protocol or folder to a new location.	Changes the order in which folders and protocols are displayed
ОК	Closes the panel and updates the Experiment Selector
Cancel	Discards any changes and keeps the Experiment Selector unchanged
Default	Reverts to the Agilent default order and names
Click 3rd mouse button on an item	Opens a menu
Сору	Copies selected item to clipboard
Paste	Pastes the "copied" item to the position above the location selected
Delete Entry	Deletes selected entry
New Folder	Creates a new Folder (or Node) in the tree. Type in the desired name and then hit the "Enter" key. Failing to hit the enter key causes the folder name to revert to "New Folder". In that case, click on the name and edit the name, then press Enter.
Add to Favorites	Copies the selected item to the Favorites node.
	Note: The menu item will show the name of the first Folder/Node displayed in the Experiment Selector. Normally, the first Node is called "Favorites", however, this is not required. If the first Node is called "Common", then the menu will display "Add To Common" and the selected item will be copied to the "Common" Folder/Node.
Change the name for an item	Click on the name and type a new name, then press Enter. Failing to press the Enter key will cause the name to revert to its original name.

 Table 32
 Features of the Experiment Selector Editor

NOTE

Duplicate names are not allowed in the same folder/node. If you try to paste or rename an item in a folder/node where an identical name exists, an error appears and the action is aborted.

Experiment Selector Editor

NOTE

Experiment Selector information contained in a protocol .xml file is always active and cannot be overridden by this Editor. Therefore, if (for example) a user has a protocol in his vnmrsys directory area which puts that protocol into a tab named ABC, that tab (or first level in the tree) cannot be permanently renamed, moved, or deleted. Nor can the protocol entry be permanently deleted or removed from its defined location. A warning will appear if one of these actions is attempted for information defined in the protocol.xml file.

File Browser

The file browser opens when you select $\ensuremath{\textit{File}} > \ensuremath{\textit{Open}}$ from the menu bar.

9	O	pen <u>,</u>	×
Choose Home Directory	:/home/vnmr1/vnmrsys/data	No.	•
Dir 1	Dir 2	Dir 3	Dir 4
Look In: 📑 Clindam	ycin		- A C C 88 5
📑 dirinfo			
Mr Clindamycin_ASA	PHMQC_01.fid		
Mr Clindamycin_CAR	BON_01.fid		
//// Clindamycin_gDC	COSY_01.fid		
Clindamycin_gHM	IBCAD_01.fid		
Clindamycin_gHN	IBCAD_02.fid		
W Clindamycin_gris	OCAD 01.fid		
Clindamycin_PHO	SPHORUS_01.fid		
/// Clindamycin_PHO	SPHORUS_02.fid		
Mr Clindamycin_PRO	TON_01.fid		
File Name: Clindar	mvcin aDOCOSY 01.fid		
Files of Tunor fid			
Files of Type:			
			Open Cancel

Figure 33 File browser — Open

Table 33	lcons	and	buttons	in	the	file	browser

Button	Description
a	Go up one level in the directory tree.
â	Go to user's home directory.
_	Make a new folder in the current directory.

File Browser

Button	Description
D-D- D-D-	Show a list of files and directories at the current directory level.
D D	Show the details of files and directories at the current directory level.
Open	Open selected file. Load into current experiment if it is a VnmrJ 3 data file, sequence, or parameter set.
Save	Save file with the name shown in the File Name: field using the extension shown in the Files of Type: field.
Cancel	Cancel selection and close the file browser.
Dir 1	Click and hold to assign current directory to this button.

Table 33 Icons and buttons in the file browser

Status Charts

The Status charts are accessed from the Hardware Toolbar at the bottom of the VnmrJ main window.

Temp	Spin	Lock	Sample
25.0 C	0 Hz	16.4	7

Figure 34 Hardware toolbar in VnmrJ

When you click one of the status plot buttons, a window appears that enables you to log and examine status data.

Figure 35 Example of Chart-Spin window with right-click menu

Features of the status chart window

Features of the status chart window

ltem	Description				
	Select color to show/hide the associated element in the chart.				
E	 Opens the Plot Format window. Here, you can Choose the orientation mode (Portrait, Landscape) The plot will be scaled to fit a full page either vertically or horizontally depending on the chosen orientation mode. Click print in the plot format window to cause the currently displayed data to be printed at the selected printer. 				
O	Toggles the x-axis units between "time-of-day" and "elapsed-time" formats. Initial format is "time-of-day".				
	 Click to zoom to display only the most recent data ("Tail" mode). The amount of data displayed will be set to the x-range selected from most recent mouse "zoom-in" operation (or last 10 seconds if zoom-in action has not yet occurred). After clicking, any new plot data will be automatically added to the end of the visible region. 				
8	Zoom out to fit data in the display ("Fill" mode).				
Right-click menu items					
Lock scale	Lock the scale to the current y axis scale. (Click tail or fill button to remove scale lock.)				
Clear history	Removes all collected plot data.				
Show Min/Max	Displays the maximum and minimum values observed since the start of data collection. (Does not appear in the printer output.)				

Table 34 Features of the Status Plot windows

ltem	Description		
Show Status	Shows the current status of the relevant status variable. (Does not appear in the printer output.)		
Start Data Log	Opens a Save dialog box where you can specify a file into which the plot data will be saved.		

 Table 34
 Features of the Status Plot windows

Using the status chart

This section describes the components of the status chart window, and what you can do with them.

Data Area

Data area where data traces and the grid are drawn.

Toolbar

A set of buttons in a right-side vertical panel (for descriptions, see Table 34.)

Popup menu

Used to select various options (right-click in data area to open the menu)

Axis Area

Values and tick marks shown to the left and below the data area, along with an x-y grid. The Horizontal axis units are displayed in either "Time-of-day" or "Elapsed-time" format. Initial format is "Time-of-day".

- Elapsed time units are Hours:minutes:seconds measured from the time that VnmrJ is started or from when "Clear Data" is selected from the pull-down menu.
- Time of Day units are "month/day hours:minutes:seconds" in local time.

Status line

Shows variable type and value (drawn below x-axis area).

Using the status chart

Zooming

The following modes of zooming are provided:

- Click and drag the left mouse button down and right to zoom in. Click and drag the left mouse button up and left to zoom out.
- Zoom in using the green arrow "tail" button in the toolbar. 🕨
 - Click the green arrow "tail" icon in the toolbar \rightarrow to display only the most recent data. The amount of data displayed will be set to the x-range selected from most recent mouse "zoom-in" operation (or last 10 seconds if zoom-in action has not yet occurred).
 - After you click the "tail" icon, any new plot data will be automatically added to the end of the visible region.
- Zoom out using the "fill" button 🔀
 - Click the "fill" button in the right-side toolbar. This action sets the plot y and x range to show all current data scaled to fit within the display.

Scale locking/unlocking

- In "zoom-in" mode, the x and y ranges will be "locked" to the boundaries set by the selected "zoom-box".
- In "Fill" mode, the x and y ranges will autoscale to make sure that all of the data in the plot buffer is displayed (ranges are "unlocked").
- In "Tail" mode the x range will normally be locked to show only the most recently collected data and the y range will be "unlocked" so that all of the displayed data is shown.
- In any mode scaling can be "locked" to the current y values by selecting **Lock scale** from the chart popup menu.
- Scale-locking is removed by selecting either the fill or tail button in the interface

Data collection

- The amount of data that is buffered and displayed in the status plots is controlled by the "values" attribute in the "statusbutton" sections of HardwareBar.xml (a system resource file).
 - The Current default is 1000 points. For example, values="1000".

- If more points than "values" are collected earlier points are discarded from the plots.
- Setting "values" to -1 will cause all data to be retained.
- All collected Plot data can be removed by selecting "Clear History" from the chart popup menu.

Data display

Status plots can show the following "traces"

- "Lines" a set of connecting lines drawn between successive data points
- "Points" individual "dots" displayed for each collected point
- "Set Value" The "target" or setpoint value for the relevant status variable type

Each display trace can be made visible or hidden by selection the associated color toggle button in the right-side toolbar.

Data Logging

A text file containing status history can be generated as follows:

• Right-click in the chart area, and then select **Start Data Log** from the display popup menu.

This opens a standard system "save" dialog window (see Figure 36). Browse to an existing file or type the name of a new file to save the log data. Click **Save File Path**. When the file dialog closes, new data will automatically be written to the specified file. Any old data in the file will be discarded (That is, a new file will be created each time). Using the status chart

Save File Path	
Look in: 📑 tmp 🔽 🖬 🛱 🛱 🔀 🗁	
X7PTABSD.pdf.part	
File Name: //tmp/spin/log	
Files of Type: All Files	5
Save File Path Cancel	<u> </u>
15:42:00 15:44:00 15:46:00	15:48:00
Spin	12.9

Figure 36 Status chart with save window

- Only new data acquired in the plot after logging starts will be added to the file.
- If logging is active a red "recording dot" will be displayed in the upper right area of the plot (see Figure 36).

To stop data logging, right-click in the data area to open the chart popup menu and select **Stop Data Log**.

Log file data format is:

"Time-of-day" "elapsed-time" "value"

Example output

DATE TIME VALUE

10/01 11:33:14 000:00:45 - 17.3

10/01 11:33:15 000:00:45 - 16.4

10/01 11:33:15 000:00:46 - 15.3

Plotting

- **1** Click the "printer" icon in the right-side toolbar to open a system Print dialog box.
- **2** Select the printer, orientation, and appearance in the General, Page Setup, and Appearance tabs.
- **3** Click **Print** in the plot format dialog to cause the currently displayed data to be printed at the selected printer. The plot will be scaled to fit a full page either vertically or horizontally depending on the chosen orientation mode.

Annotation

To include optional text information, right-click in the data area, and select the following options from the popup menu:

Show Min Max will show the maximum and minimum values observed since the start of data collection.

Show Status will show the current status of the relevant status variable.

Note: Annotation text does not appear in the "printer" output.

Using the status chart

VnmrJ 4.2 Familiarization Guide

3

VnmrJ Preferences

Templates Tab104Automation Tab112SQview Tab119Queue Tab120eOptions Tab123Data Mirror Tab126SampleTags Tab128UserPrefs Tab130

The default behavior of VnmrJ at the user account level has several customizable options. These options are different from those that can be accessed by the administrator of VnmrJ. The optimal operation of these customization options requires a properly set up probe file for the probe in use.

Select **Preferences** from the **Edit** menu on the main VnmrJ window to access the VnmrJ preferences setup window. Note that some of the options appear only if the **Enable Email Options** check box has been selected. Ensure that an email server has been properly configured on the host computer.

Templates Tab

The **Edit > Preferences > Templates** tab can be used to select where the data is saved and how data is to be named.

				Prefere	nces			
Templates	Automation	SQview	Queue	eOptions	DataMirror	SampleTags	UserPrefs	
Templates Templa Stuc Sam Data Auto Bitm Exa	Automation ate preferences: dy directory temp nple directory ter a template (svfna omation directory nap image forma mples: Study Sample Automation d	SQview plate (svfdir nplate (sam ame) y template (t pdf directory: Data: directory: directory:	Vueue	eOptions R \$userdir\$/i \$samplena \$pslabel\$_ auto_%DATi Time displa r1/vnmrsys/i .20130220. .fid r1/vnmrsys/i	DataMirror estore defa data me\$_%DATE% E% y format 1 data 01 Automation/a	SampleTags	▼	
				Save				

Figure 37 Preferences—Templates tab

The following describes the options for the Templates tab:

ltem	Description				
Study Directory Template	Defines where the data for all the samples is stored. It defines the parameter svfdir. Refer to Format of the Entry Level for the exact format of this entry.				
Sample Directory Template	Defines the directory inside the study directory where all the data for any sample are stored. It defines the parameter sampdirtmplt. This is always a subdirectory for the study directory, svfdir. Refer to Format of the Entry Level for the exact format of this entry.				
Data Template	Defines the actual name that is given to the individual fid files. It defines the parameter svfname. This file is saved inside sampdirtmplt. Refer to Format of the Entry Level for the exact format of this entry.				
Automation Directory Template	Defines location of the automation directory, where the system stores all the information to do the automation run. It defines the parameter autodir. Refer to Format of the Entry Level for the exact format of this entry.				

 Table 35
 Options in the Preferences—Templates tab

ltem	Description			
Bitmap Image Format	Drop-down menu with the following selections: tif —This creates a TIFF format document, typical for accurate representation of bitmap images. A			
	TIFF document can be read with most common image and word processing programs.			
	pdf –This creates a document according to the Adobe PDF™ document format. A PDF document can be read using Adobe Acrobat Reader. The PDF documents created from VnmrJ require Adobe Reader version 5 or higher.			
	pcx –This creates a document using the PCX protocol, adequate for representations of bitmap images. PCX documents can be read with most common image and word-processing documents.			
	jpg —This creates a JPEG format document accurate for the representation of real-life photos. JPEG documents can be read with most common image and word processing programs.			
Time display format	Select the desired format for displaying time from the drop-down menu.			

Table 35Options in the Preferences—Templates tab

Format of the Entry Level

The format used to enter the directories in the first three fields is the same as was used previously for "autoname". A detailed description of it appears under the description of "autoname" in the *Command and Parameter Reference Manual* for VnmrJ. A brief description is shown here.

There are three types of text that can be entered in these fields. All the options can be mixed together generating very powerful saving options.

1 Fixed text, such as "/home/vnmr1/data." This is interpreted as is without any special translations. If the text defines an absolute directory path then this path will be used (example /vnmr/data). If there is no absolute path then the directory will be created as a subdirectory of the previously defined directory path. So if sample directory is defined as "*mysamples/today*" then the subdirectory will be created for the study directory.

- 2 Text enclosed in "\$" signs. This will substitute the enclosed text with the value of the VnmrJ parameter with the same name. For example \$samplename\$ will be substituted with "mysample" if samplename='mysample'. Any VnmrJ parameter can be used for this. The most useful ones will be the ones defining sample parameters (studyowner, samplename, solvent, etc.) and experiment parameters (pslabel which shows what experiment is run for example). So "\$samplename\$/\$pslabel\$" will translate into "mysample/PROTON" in the case of a proton spectrum.
- **3** Text enclosed in "%" signs. This will substitute the enclosed text with the entry on the actual enterQ file being used. This can be very cryptic but some useful options are outlined here. For more detailed description the user is referred to the *Command and Parameter Reference Manual*.
 - a %DATE%: This will be substituted with the date that the spectrum is acquired. Other allowed entries are %DAY%, %MO%, %MOC%, %YR%, %YR2%, %HR%, %MIN% and %SEC%.%RX% where X is a number: This will be substituted with a numerical extension in the form "00", "01". "02" etc. The number X defines the number of digits that will be used for the extension, so %R2% will generate "01" while %R3% will generate "001" etc. This ensures that a unique name is generated for every directory created. A %R2% will be appended automatically to the study, sample and automation directory templates if no "%RX%" is explicitly defined. One can suppress the numbering entirely using %R0%". This is, however, not recommended for the Data Template as it may accidentally overwrite data. When using %R0% at the end of the "Sample Directory Template", all data on the same sample but from different Automation Runs (typically from two or more consecutive days) will be saved into the same sample directory, which may be desirable.

The examples at the bottom of the **Templates** tab show what each of the strings entered translates to. Some useful examples are displayed below.

The example shown in Figure 38 on page 108 will direct all study data to *home/chemp/vnmrsys/data/*<operator name>. This is accomplished by the use of the **\$operator_\$** argument. Note that the more proper parameter to use in VnmrJ would be **\$studyowner\$**. The data for each sample will further be saved in a directory named <notebook>_<page>, where notebook and

page are the notebook and page numbers that were entered in the Start tab of the parameter panel. The revision number is suppressed here. The actual FIDs will be saved as <experiment>_<samplename> with a three digit revision after it.

			Pr	eferences			
E	mail disabled	🗆 Er	nable Ema	il Options			
Templates	Automation	SQview	Queue	eOptions	DataMirror	SampleTags	UserPrefs
Ter	nplate Preferen	es:		Re	store to defa	ilts	
	Study Directo	ry Template	e (svfdir): //h	ome/chemp/v	nmrsys/data/\$op	erator_\$	
San	nple Directory Temp	olate (sampo	dirtmplt): \$r	otebook\$_\$pa	ige\$%R0%		
	Data	Template (s	vfname): \$p	slabel\$_\$sam	plename\$_%R3%		
4	utomation Director	/Template ((autodir): Jau	to_%DATE%			
Bi	itmap image format	pdf	<u> </u>	Time dis	play format: 12H	Hour (AM/PM)	-
Exa	mples:						
	Study Dir	ectory: /ho	me/chemp/	/nmrsys/data/	vnmr1		
	Sample Dir	Doto: CAP	s_⊃ RON Vitami	n D3 001 fid			
	Automation Dir	ectory auto	0 20101013	3_01			
				Save			
	[Edit	<u>U</u> ndo	Close	Abandon		

Figure 38 Data saving templates

The example shown in Figure 39 on page 109 illustrates the inclusion of a fixed text in the sample directory name (Book_<notebook>).
			P	references			
E	mail disabled	🗆 Ei	nable Ema	ail Options			
Templates	Automation	SQview	Queue	eOptions	DataMirror	SampleTags	UserPrefs
Ter	nplate Preferenc	es:		Re	store to defa	ults	
San A	Study Directo nple Directory Temp Data sutomation Directory	ry Template late (samp) Femplate (s Template)	e (svfdir): // dirtmplt): B svfname): \$ (autodir): a	nome/chemp/vi pok_\$notebook pslabel\$_\$sam uto_%DATE%	nmrsys/data/\$oj \$_page_\$page\$ plename\$_%R3%	perator_\$ %R0%	
В	itmap image format:	pdf		Time dis	play format: 12	Hour (AM/PM)	-
Exa	mples: Study Dir Sample Dir Automation Dir	ectory: /ho ectory: Boo Data: CAF ectory: aut	me/chemp; k_123_pag RBON_Vitam o_2010101	/vnmrsys/data/ e_5 in_D3_001.fid 3_01	vnmr1		
				Save			
		Edit	<u>U</u> ndo	Close	Abandon]	

Figure 39 Example–Inclusion of text in Sample Directory Template

The example in Figure 40 on page 110 shows the date is part of the directory name.

Templates Tab

Preferences
Email disabled 🗌 Enable Email Options
Templates Automation SQview Queue eOptions DataMirror SampleTags UserPrefs
Template Preferences: Restore to defaults
Study Directory Template (svfdir): //home/chemp/vnmrsys/data/\$operator_\$
Sample Directory Template (sampdirtmplt): Book\$notebook\$_%DAY%%MOC%%YR%R0%
Data Template (svfname): \$pslabel\$_\$samplename\$_%R3%
Automation Directory Template (autodir): auto_%DATE%
Bitmap image format: pdf 💽 Time display format: 12Hour (AM/PM) 💌
Examples:
Study Directory: /home/chemp/vnmrsys/data/vnmr1
Sample Directory: Book123_13Oct2010
Data: CARBON_VILamin_D3_001.10
Automation Directory, auto_20101015_01
Save
Edit <u>U</u> ndo Close Abandon

Figure 40 Example—Inclusion of date in Sample Directory Template

Data from one operator can be sorted to different subdirectories according to the date the data was recorded.

			Pi	eferences			
E	mail disabled	🗆 Ei	nable Ema	il Options			
Templates	Automation	SQview	Queue	eOptions	DataMirror	SampleTags	UserPrefs
Te	mplate Preferen	ces:		Re	store to defau	ilts	
	Study Direct	ory Template	e (svfdir): //h	ome/chemp/v	nmrsys/data/\$op	erator_\$/%DATE%	
Sar	mple Directory Tem	plate (sampo	dirtmplt): \$9	amplename\$%	R0%		
	Data	Template (s	vfname): \$	oslabel\$_\$sam	plename\$_%R3%		
,	Automation Director	y Template ((autodir): Jau	to_%DATE%			
E	litmap image forma	t: pdf		Time dis	play format: 12H	lour (AM/PM)	•
Exa	amples:					_	
	Study Di	rectory: /ho	me/chemp/	vnmrsys/data/	vnmr1/2010101	3	
	Sample Di	Data: CAF	RON Vitam	in D3 001 fid			
	Automation Di	rectory: aut	0_2010101	3_01			
				Save			
		Edit	<u>U</u> ndo	Close	Abandon		

Figure 41 Example—Inclusion of date in Study Directory Template

NOTE

Any changes done on this window should be saved before exiting the window. Otherwise, changes are lost. The changes require the creation of a new automation run to become active.

Automation Tab

Automation preferences are set in the Edit > Preferences > Automation tab.

emplates	Automation	SQview	Queue	eOptions	DataMirror	SampleTags	UserPrefs
Automati	on preferences:	travmax =	96				
					AL	utomation directo	nv.
Samp	ole change time		180	S			urrent
Proce	ess/plot time		60	S		Create as n	ar schedule
Shim	each sample fro	m	Last shi	ms	-	e create as p	er schedule
Skip	sample if protur	ie fails	🗌 yes			Set tim	e schedule
Max	priority samples		nolimit	(per oper	rator)		
Wher	n DayQ exceeds	time limit:	🗌 redire	ect Exp to Nig	htQ		
Locat	tions selection		Let user	select	-		
Auto	-resubmit errore	ed locations	🗌 yes				
Reus	e errored locatio	ons	🗌 yes				
Reus	e completed loc	ations	🖌 yes				
Defa	ult automation te	emp.(C):		Ambient			
Wher	n Automation qu	eue is done	leave cu	irrent sample	in magnet	-	
			-				
				Save			

Figure 42 Preferences–Automation tab

The **Automation** tab defines the defaults that will be used for automation experiments. Defaults are described in the following table.

ltem	Description
Traymax	This parameter indicates what type of autosampler is actually used. If this is not set up properly then it needs to be changed in the System Preferences window. Only vnmr1 can make this change.
Sample Change Time	This is the approximate time required for the sample change using the autosampler, the finding of the z0 value for the automatic locking, the automatic tuning (ProTune) and the automatic shimming. The default value is 120 seconds which should be sufficient for most cases. It is generally advised to round the time rounded up, so if the system needs 100 seconds to enter instead 120. This ensures that the time calculations will not fall off because of too short estimates.
Process/Plot Time	This is the time required to process, plot and save the spectrum. The default value of 10 seconds should be sufficient. Use a longer value only if you are using a slower computer.
Shim Each Sample From	This defines the shims started by the system when the shim tries to shim a new sample. There are two options:
	 Last shims: Last shims use the shims from the previous sample run Default shims: Default shims load the shim file that is in the probe file. In actual operation with properly prepared samples the outcome should be equivalent. If however that range of samples and tubes used varies widely then the use of Default shims give more consistent results.
Skip Sample if Protune Fails	This check-box appears only if ProTune is installed. If checked then the system skips the sample in the unlikely event that the automatic tuning fails. When the check box is not selected, the data acquisition proceeds.
Maximum Priority Samples	This defines the maximum priority samples an operator can submit in each automation run. The right to have priority samples is granted from the VnmrJ administrative interface.
When DayQ Exceeds Time Limit	By default, with "redirect Exp to NightQ" unselected experiments that are attempted to be added to the DayQ but exceed the DayQ limit result in an error and are not added to the StudyQ. With this option selected, such Experiments are added to the NightQ instead, Select redirect Exp to NightQ if the DayQ has exceeded it's time.
Locations Selection	This drop-down menu defines whether users will be allowed to choose the sample location manually (Let User Select option) or not (Next Available option). The Next Available option will ignore the user input and submit the experiment queue for the next available sample position in the autosampler.
Auto-Resubmit Errored Locations	Select yes to automatically resubmit samples back into the queue that have errorred.

Table 36 Preferences — Automation tab

3 VnmrJ Preferences

Automation Schedule

ltem	Description
Reuse Errored Locations	Select yes to automatically reuse samples that have errored.
Reuse Completed Locations	Select yes to automatically reuse samples that have completed.
Default Automation Temp. (C)	Defines the temperature default for all samples run in automation. If at the time New Automation run is started, the temperature control is enabled in the account, a new temperature can be specified at customization time. The software checks if the chosen temperature is safe given the choice of solvent for that sample. In addition, if variable temperature is allowed in sample changer automation, it is important to set the value for the tin (temperature interlock) parameter contained in ~/vnmrsys/modules/cpQdefaults be set to "w" so that the sample changer will not insert any sample until the probe has reached the requested temperature.
When Automation Queue is Done	This dropdown menu defines what should happen when the last sample of a StudyQ is done and there are no more sample in the queue:
	 put standby sample (loc=>traymax>) into magnet. This removes the last sample run from the magnet thus allowing its owner to retrieve it from the autosampler tray. The standby sample needs to be placed in the position indicated in the field, position 96 in the case of the figure above. That particular sample location is not available for use. leave current sample in magnet. This leaves the last sample of the StudyQ in the magnet for further use. remove current sample from magnet. Only removes the current sample from the magnet without inserting a (standby) sample. This option is only available with 7600AS and 7510AS sample changers.
Automation Directory	Determines when a new automation directory shall be created:
	 Always use current. The current automation directory is used until the user creates a new one by selecting "Automation Run (autodir) -> New Automation Run" from the "Automation" menu. Create as per schedule. A new automation directory is created on each day on which a previous NightQ ended as defined with the "Set Time Schedule" window.
Set Time Schedule	Opens the Automation Schedule window to set time schedules for automation runs. See "Automation Schedule" on page 114.

Table 36 Preferences — Automation tab (continued)

Automation Schedule

To open the Automation Schedule tool, click Edit > Preferences to open the **Preferences** window. Then select the **Automation** tab and then click **Set Tine** Schedule.

2		Automatio	n Time Scheduler			
Automation Run	Automation File					N
		New DayQ begins at Mai	Time per Sample	Current NightQ merges at	MaxTime per Sample	
Monday:	New Autodir NightQ	8:00AM 💌 30mi	n 🗸 🗌 variable	6:00PM 💌	Unlimited 💌	
Tuesday:	New Autodir NightQ	8:00AM 💌 30mi	n 💌 🗆 variable	6:00PM -	Unlimited 💌	
Wednesday:	New Autodir NightQ	8:00AM 💌 30mi	n 💌 🗆 variable	6:00PM 💌	Unlimited 💌	
Thursday:	New Autodir NightQ	8:00AM 💌 30mi	n 💌 🗆 variable	6:00PM -	Unlimited 🔻	
Friday:	New Autodir NightQ	8:00AM 👻 30mi	n 💌 🗆 variable	6:00PM -	Unlimited 🔻	
Saturday:	New Autodir NightQ	30mi	n variable	6:00PM	Unlimited 🔻	
Sunday:	New Autodir NightQ	30mi	n variable	6:00PM	Unlimited 💌	
	New automation directo Mon(8:00) Tue Automation directory wi	y will be automatically 3:00) Wed(8:00) Thu(8 NOT be created on Si	created at/after (when t :00) Fri(8:00) at Sun. Previous day auto	he first study is init	iated): Jes.	
		Save t	nis Schedule			
		C	lose			

Figure 43 Automation Schedule window—Automation Run tab

3 VnmrJ Preferences

Automation Schedule

9	Automation Time Scheduler
Automation Run	Automation File
	<> ShortQ> Total time MaxTime MaxTime per Sample per Sample
Monday:	10 hrs 30min 14 hrs Unlimited
Tuesday:	10 hrs 30min 14 hrs Unlimited
Wednesday:	10 hrs 30min 14 hrs Unlimited
Thursday:	10 hrs 30min 14 hrs Unlimited
Friday:	10 hrs V 30min V 14 hrs V Unlimited V
Saturday:	10 hrs V 30min V 14 hrs V Unlimited V
Sunday:	10 hrs 30min 14 hrs Unlimited
	Save this Schedule
	Close

Figure 44 Automation Time Scheduler—Automation File

The **Automation Schedule** tool allows the account administrator to define how time is allocated during the day or night for Automation Runs (AutoRuns, typically on demand sample automation) and Automation Files (AutoFiles, sample queues built for submission at a time chosen by the account administrator). Selecting the All Day check simply turns off time management and is a better choice for a research environment as opposed to an open system being accessed by a large number of chemists. Using the **Automation Schedule** tool, the user can define different queue times for different times of the day as well as after hours' queues. At sample submission time with the NightQ enabled, a chemist can submit certain experiments to the day and others to the night.

There are definitions for each day of the week. The first two columns define when the day and night starts. They are only active if the "All day" option is not selected. The third column, Max Time per Sample, defines how much experiment time will be allocated per sample during the day. The column with the same name further to the right defines the maximum time per sample during day and night runs.

The definitions for the AutoFiles are similar, with the fields defining how long the total time for short and long queues should be and how long the maximum time per sample allowed for short and long queues should be.

The maximum time per DayQ sample can also be made variable, for example, to allow users longer runs during lunchtime. To do this:

1 Select the variable check box. A new button set/view appears.

		New DayQ begins at	MaxTime per Sample	Current NightQ merges at	MaxTime per Sample
Monday:	New Autodir	8:00AM	30min 💌 Variable	6:00PM -	Unlimited 👻

- **2** Select a longer MaxTime per Sample to accomodate the longer allowed "lunch queue".
- 3 Click it to see and/or edit the detailed DayQ time limits for that day.

Automation Schedule

DayQ I	pegins: 8:0	0	ends: 18:00		
	Maxtime/sa	ample 2:00)	New	schedule
Start	End	Duration		Start:	2:00PM
8:00	12:00	0:30		End:	6:00PM
12:00 14:00	14:00 18:00	2:00 0:30		Maxtime:	30min
				A	dd

- 4 Enter the new, "split" DayQ limits by adding pieces of schedule:
 - a Start with first schedule part: Select the DayO start (here 8:00 AM), select the End (to the beginning of "lunch", here noon) and select Maxtime (here the default 30 min). Click Add.
 - **b** Now enter the start and end times during which longer DayQs are allowed (here 2 h). Click **Add** again.
 - c Finally, enter the second normal time period (afternoon). Click Add.
 - **d** Click **Save** to keep this variable schedule. The variable time limits schedule can be erased to start afresh by clicking **Clear**. Click **Cancel** if you want to exit this panel without saving.

A variable schedule may have more than three entries.

Note that any changes done on the automation schedule need to be saved (red **Save** button) before exiting the window, otherwise they will be lost. The changes will usually require the creation of a new automation run in order to become active.

SQview Tab

The **Edit > Preferences > SQview** tab allows the user to change the Study Queue display order or restore the display order to default.

Select the **Show Scout Fids** check box to display all prescan FIDs in the Study Queue.

Templates Automation SQview Queue eOptions DataMirror SampleTags UserPrefs StudyQueue view options: Spectrometer view preferences: Display order: Restore defaults Image: Completed studies/FIDs Active sample Display order: Restore defaults Image: Completed studies/FIDs Spectrometer Study cluster Active study Completed studies Sample view preferences: Studies in progress FIDs (chronological acquisition) Show scout FIDs Errored studies Active study (here) Pending studies (chronological location access) Studies in DayQ/NightQ	3				Prefere	nces		
StudyQueue view options: Spectrometer view preferences: Sample Display order: Restore defaults Active sample Reverse chronology for completed studies/FIDs Spectrometer Active study Study cluster Completed studies Sample view preferences: Studies in progress Show scout FIDs FIDs (chronological acquisition) Show errored nodes Active study (here) Pending studies (chronological location access) Pstudies in DayQ/NightQ	Templates	Automation	SQview	Queue	eOptions	DataMirror	SampleTags	UserPrefs
	Stuc	dyQueue view op L Sample L Active san Spectrome Study clusi apple view prefere Show scou L Show error	tions: aple eter ences: t FIDs red nodes		Spectrome Display or Re V V	eter view pref der: verse chronol Active study Completed st Studies in pro FIDs (chronold Errored studi Active study (Pending studi Studies in Day	erences: Restore defau ogy for completed udies gress ogical acquisition) es here) es (chronological li /Q/NightQ	ilts studies/FIDs ocation access)

Figure 45 Preferences-SQview tab

3 **VnmrJ Preferences Queue Tab**

Queue Tab

The Edit > Preferences > Queue tab offers options for the actual automation queue. All settings at this page are default settings. Each sample submission will start with these default settings. They can be overwritten during the sample submission.

Templates Automation SQview Queue eOptions DataMirror SampleTags UserPrefs Queue preferences: [User can override AutoLock, AutoShim, ProTune, and TempPad options] Before first experiment: AutoLock AutoShim for New and continue study Image: Continestudy Image: Continue study </th
Templates Automation SQview Queue eOptions DataMirror SampleTags UserPrefs Queue preferences: [User can override AutoLock, AutoShim, ProTune, and TempPad options] Before first experiment: AutoLock AutoShim for New and continue study Image:
Queue preferences: [User can override AutoLock, AutoShim, ProTune, and TempPad options] Before first experiment: AutoLock AutoShim for New and continue study • By default, run Queue in: Image: Automation Foreground Background By default, add Image: to the Queue for a new study Image: Allow submssion to Automation Queue (traymax = 96)
Before first experiment: ✓ AutoLock ✓ AutoShim for New and continue study ▼ By default, run Queue in: ● Automation ○ Foreground ○ Background By default, add ● to the Queue for a new study ✓ Allow submssion to Automation Queue (traymax = 96)
By default, run Queue in: Automation Foreground By default, add Altow submssion to Automation Queue (traymax = 96)
By default, add to the Queue for a new study Allow submssion to Automation Queue (traymax = 96)
✓ Allow submssion to Automation Queue (traymax = 96)
Before first (day and night) experiment: 🗌 ProTune
Before first acq. equilibrate sample temp for: 0.5 s (TempPad)
After findz0 routine read lockphase from probe file (automation only)
Before sample insert, allow 300 s for temp to change; else Ignore 💌
✓ Allow submission to Non-Automation Queue in foreground
Allow submission to Non-Automation Queue in background
Before first experiment: 🗌 ProTune
Save

Preferences-Queue tab Figure 46

Table 37Preferences — Queue tab

ltem	Description
Before First (Day and Night) Experiment	Defines whether the system will automatically lock and shim before the first experiment of a sample queue.
By default run queue in	Select whether to run the queue automatically, in the foreground, or in the background.
By default, add	This option allows for an experiment to be automatically added by default to each new queue. For example, "PROTON".

ltem	Description
Allow Submission to Automation Queue	This setting activates the automation queue. If this is not desired then this should be unchecked.
Before First (Day and Night) Experiment	If the system is equipped with a ProTune module, this selection defines whether the system will automatically run ProTune before the first experiment of a sample queue.
Before first acquisition equilibrate sample Temp forseconds (TempPad)	This sets the amount of time that the system will wait for the temperature to equilibrate after it inserts the sample into the magnet but before recording any spectra. The default value is 2 seconds which should be sufficient for experiments conducted at or near ambient temperatures. Increasing this value has got the advantage of having the temperature better equilibrated in the sample but the disadvantage of increasing the time required for each sample.
After findz0 routine read lockphase from probe file (automation only)	This is a setting for optimizing the lock system before spectra are recorded. If selected then the lock phase is set to the value in the probe file overwriting any value that has been set manually. The normal value for this box is unchecked. It should only be checked if there is a suspicion that the lock phase is not set properly. In this case the probe file should be updated with the correct value for the lock phase.
Before sample insert, allow <u>seconds</u> for Temp to change; Else	This value selects the amount of time the system waits after retrieving a completed sample but before inserting the next sample for the temperature to equilibrate. This is a useful feature when operators are allowed to run samples in automation at different temperatures. It can be used to avoid the case where a sample was run at a temperature higher than the boiling point or lower than the freezing point of the next sample's solvent. The time defined here is the maximum time that the system will wait for the temperature to equilibrate. If the temperature equilibrates faster, the run continues. The actions in the pull-down menu defined. The possible actions are:
	"Ignore", which causes the system to ignore the condition and proceed with the sample submission, "Abort", which causes the system to abort the automation run and "Alert" which gives a warning to the operator.
Allow submission to Non-automation Queue in Foreground	Select to allow users to run manual Study queues on one sample in the foreground. The foreground option will run all of the StudyQ's experiments in the current VnmrJ experiment.

Table 37 Preferences — Queue tab (continued)

VnmrJ Preferences 3 Queue Tab

Table 37	Preferences —	Queue	tab	(continued)	
----------	---------------	-------	-----	-------------	--

ltem	Description
Allow submission to Non-automation Queue in Background	Select to allow users to run manual Study queues on one sample in the background. The background option runs the single Study queue in the same way as a standard automation run; by holding all the information in the autodir directory.
Before First Experiment	If the system is equipped with a ProTune module, the option for automatic tuning before the first experiment appears here If automatic tuning before the first experiment is not desired then this box should be unchecked.

NOTE

Any changes done on this window need to be saved (red button Save) before exiting the window, otherwise they will be lost. The changes will require the creation of a new automation run in order to become active.

eOptions Tab

Electronic options are set in the **Edit > Preferences > eOptions** tab.

			Prefere	nces				
Templates Automation SQ	iew Qu	eue e	Options	DataMi	rror	SampleTags	UserPrefs	
eOptions preferences:	(User can	override	Plot2plotte	r and eMe	essage	e options]		
Email options disab	led							
After every experiment	Plot2	plotter						
	🗌 Ema	I the FID						
	🗌 Save	a plot	🗌 Sav	e JCAMP s	pectr	um (1D only)		
	🗌 Ema	l a plot	🗌 Ema	ail JCAMP	spect	rum (1D only)		
Bitmap image format	pdf	-	JCAMP	format	std	-		
Plot parameter style	Basic	-]					
Send eMessages to:	Stud	/ owner	Adr	ninistrator	r			
					_			
			Save					

Figure 47 Preferences-eOptions tab

The **eOptions** tab defines actions that will be taken to produce an electronic output of the recorded spectra. The default options set on this tab will be the default option with every new study queue. Each operator has the option to override these in the **Start** parameter panel during the submission of the queue. The available options define what happens after every experiment.

Table 38 eOptions tab

ltem	Description
Plot2plotter	Select to produce a hardcopy output to a defined plotter.
Save a plot	Select to save the plot in the format defined in the Bitmap Image Format field.

3 VnmrJ Preferences

eOptions Tab

Table 38 eOptions tab (continued)

ltem	Description
Email a plot	This option is enabled only if the "Enable Email Options" is checked at the top of the window. If it is, then the system will send a plot of the recorded spectrum as an e-mail attachment to the e-mail address of the operator who submitted the sample.
Save JCAMP spectrum (1D ONLY)	Select to save a 1D JCAMP Spectrum in the format defined in the JCAMP Format field.
Email JCAMP spectrum (1D ONLY)	Select to email a 1D JCAMP Spectrum as an e-mail attachment to the e-mail address of the operator who submitted the sample. This option is enabled only if the "Enable Email Options" is checked at the top of the window.
Email the fid	This option is also enabled if the "Enable Email Options" is checked at the top of the window. If it is then the system will send the entire fid of the recorded spectrum as an e-mail attachment to the e-mail address of the operator who submitted the sample. This option should be used with care as NMR spectra, especially multidimensional ones, can grow to very large sizes which may not be accommodated by the available capacity and bandwidth of the e-mail servers.
Bitmap image format	This pull-down menu defines the format of the plot that will be saved or e-mailed. Options are:
	 tif. This creates a TIFF format document, typical for accurate representation of bitmap images. A TIFF document can be read with most common image and word processing programs. pdf. This creates a document according to the Adobe PDF[™] document format. A PDF document can be read using Adobe Acrobat Reader. The PDF documents created from VnmrJ require Adobe Reader version 5 or higher. pcx. This creates a document using the PCX protocol, adequate for representations of bitmap images. PCX documents can be read with most common image and word-processing documents. jpg. This creates a JPEG format document accurate for the representation of real-life photos but are less recommended for line-art pictures. JPEG documents can be read with most common image and word processing programs.
JCAMP Format	 This pull-down menu defines the JCAMP format for 1D that will be saved or e-mailed: std. Contains the processed spectrum in binary encoded text format. xy. X-Y ASCII text table of the processed spectrum that can be read by spreadsheet programs like Excel or mathematical software.

NOTE

Any changes done on this window need to be saved (red button **Save**) before exiting the window, otherwise they will be lost. The changes will require the creation of a new automation run in order to become active.

Data Mirror Tab

VnmrJ provides the option to automatically store another copy of the data recorded in automation on a local or remote disk. Use the Edit > Preferences > Data Mirror tab to set up this feature.

				Prefere	nces			
Templates	Automation	SQview	Queue	eOptions	DataMirror	SampleTags	UserPrefs	
Data	Mirror preference	es: 🗌	On/Off					
Те	mplate for FIDs							
Te	mplate for plots							Γ
Te	mplate for spect	ra 📕						
Bit	map image form	at po	if	JCA	MP format std	-		
Dyna	mically maintain	a 2nd copy	of the sam	ple directory:				
Te	mplate for 2nd o	opy						-
Exam	iples:	FIDs:						
		Plots:						
	2	Spectra:						
	Path to 2n	id copy.						
								_
				Save				

Figure 48 Preferences — DataMirror tab

If the option is turned on (**ON/OFF** check box at the top of the window) the feature is activated and each dataset is saved twice: first at the locations defined in the **Templates** tab, second at the locations defined on this tab. The syntax for the templates is identical to the ones in the "Templates Tab" on page 104.

There are three types of files that can be mirrored: FIDs, Plots and Spectra. The entire sample directory can be mirrored as well which is defined in the last field on this tab. Data mirroring can be useful for backup. When used with externally mounted or network drives, users can access data at other systems. This can have several benefits, reducing the load on the spectrometer computer host and reducing the need for extensive network transfers of data.

A complementary tool to this is the UNIX function of rsync. The way to setup rsync is described in the *User Programming Guide*.

NOTE

Any changes done on this window need to be saved (red **Save** button) before exiting the window, otherwise they will be lost. The changes will require the creation of a new automation run in order to become active.

SampleTags Tab

The **Edit > Preferences > SampleTags** tab allows the system administrator to define which parameters required for each sample will be recorded and transferred to all experiments in one sample queue.

				Prefere	nces		
Templates	Automation	SQview	Queue	eOptions	DataMirror	SampleTags	UserPrefs
Sar (T) the pro qu	nple tags: nese parameters ir values will be eserved during a eued acquisition.	and]	Basic [Req pltopt emessage archivedir adirtwedir adir2tmplt emailwhen emailaddr notebook retentiontir lot nameprefi)	uired) Use	rSampTags	Required Param Parameters in th list above may n have empty value [reqparvals]	eters e ot 25
			Sa	ve sample	tags		
				Save			

Figure 49 Preferences — SampleTags tab

The window displays three lists of parameters.

Table 39Preferences — Sample Tags tab

ltem	Description
Basic	These are parameters are the standard set captured by default with every parameter set, such as samplename, the data directory where data are saved, etc.

UserSamp Tags	Any parameters that the account owner has created and wants to have available for all spectra. For example, a string variable named charge_code could be created and then added to this list. That variable would then be captured with every spectrum and would be available for use in the data save templates.
reqparvals	This column contains the parameters that will be absolutely required to be entered, otherwise the automation run will not be able to proceed. Note that any parameter appearing as data saving parameter in the Templates tab will automatically be required and does not need to be entered again here.

Table 39 Preferences — Sample Tags tab (continued)

NOTE

Any changes done on this window need to be saved (red **Save Sample Tags** button) before exiting the window, otherwise they will be lost. The changes will require the creation of a new automation run in order to become active.

UserPrefs Tab

The **Edit > Preferences > UserPrefs** tab allows the account administrator to set up operator options.

				Preferences							
Automation	SQview	Queue	eOptions	DataMirror	SampleTags	UserPrefs					
UserPrefsRemer	mbrance dis	abled									
			After	user login:							
				Do	nothing	-					
			After	sample submis	sion:						
				Do	nothing	-					
				Process data or Enable Adaptive Send submissio	i drag-and-drop ≥ NMR ns to Study Mimi						
	UserPrefsRemer	UserPrefsRemembrance dis	UserPrefsRemembrance disabled	UserPrefsRemembrance disabled After After	UserPrefsRemembrance disabled After user login: Do After sample submis: Do Process data on Enable Adaptive Send submissio	UserPrefsRemembrance disabled After user login: Do nothing After sample submission: Do nothing Process data on drag-and-drop Enable Adaptive NMR Send submissions to Study Mimi					

Figure 50 Preferences — UserPrefs tab

The first task the account administrator should perform using the **UserPrefs** tab is to decide the action to be taken after sample submission.

ltem	Description	
Do nothing	Enables the user to leave the list of experiments in the StudyQueue in place for submission in full or in part to another location.	
Clear Queue	Clears the experiment list while leaving the interface in submission mode for easy creation of a new queue for other sample locations.	
Quit Submit mode	Automatically "clicks" the Done button, exits the sample submission mode and leaves the operator in Data Review mode.	

 Table 40
 Preferences — UserPrefs tab options

ltem	Description	
Operator logout	Quits the submit mode and logs that operator out automatically.	
	This may be useful for a high-volume NMR service lab with lots of operators who tend to generally submit one sample at a time.	

Table 40 Preferences — UserPrefs tab options (continue)

The account administrator should next define the interface personality at the time of operator login.

The choices are as follows:

Choice Description		
Do nothing	Displays the manual/sample review mode - the user must click New Study to begin an Automation.	
Show Tray	Displays the manual/sample review mode showing the automation tray	
Ready for submit	Automatically "clicks" " New Study " button to enable the submission mode of the interface	

 Table 41
 Options for defining user interface at login

In the **UserPrefs** tab, the option **UserPrefsRemembrance** enables the user to set values for any desired parameters that can be pre-set upon entry of sample submission mode. The parameters can be unique for each operator, allowing users to easily manage pre-filling of items such as preferred solvent, notebook, email address, and so on.

NOTE

Any changes done on this window need to be saved (red button **Save**) before exiting the window, otherwise they will be lost. The changes will require the creation of a new automation run in order to become active.

Once **UserPrefsRemembrance** is enabled and the parameter list for remembrance is defined by the account administrator, individual operators can manage their own preferences for those parameters via the menu **Edit> Operator Preferences**:

Operator Preferences Setup					
Preferences for vnmr1:	Save Selections Restore Defaults				
printer <mark>test2 [b+w]</mark> notebook solvent DMSO	✓	נכ			
Upon operator logout, update values and recall during next login					
Edit	Undo Close Abandon				

In this example, the operator choices for printer, plotter, and solvent have been defined by the account administrator by entering those checks or parameter names into the entry box. After the first time, the account administrator must select the **Setup Default** values button to assign defaults for the user to start modifying values.

The menu for plotter and printer read valid devices known to the NMR spectrometer and each operator can choose the location where the data hard copy is plotted. The userRemembrance tools help prevent keying errors of items such as a laboratory notebook and preferred solvents. In this example the email address is controlled by the operator and not an administrative task for the account administrator. An operator can choose to direct PDF plot emails to any desired email address.

Preparing for an Experiment

Starting VnmrJ 134 Preparing for an Experiment 135 Prepare the sample 136 Load the sample 137 Tune the Probe 139 Optimize the Lock 142 Shim the System 143 Set up the Experiment 147

4 Preparing for an Experiment Starting VnmrJ

Starting VnmrJ

- **1** Log in to the workstation.
- **2** Double-click the VnmrJ icon.

The VnmrJ program window opens. See Figure 2 on page 16.

Preparing for an Experiment

Before you can acquire a spectrum, prepare the sample and set up the experiment using the following steps.

- "Prepare the sample" on page 136
- "Load the sample" on page 137
- "Tune the Probe" on page 139
- "Optimize the Lock" on page 142
- "Shim the System" on page 143
- "Set up the Experiment" on page 147

After you complete these steps, go to Chapter 5, "Acquiring Data" to review how to acquire the data.

4 **Preparing for an Experiment Prepare the sample**

Prepare the sample

1 Prepare the NMR sample by dissolving the analyte in a deuterated solvent.

Use a concentration that will completely dissolve the sample, usually between ~1 mg/mL and ~50 mg/mL.

- 2 Transfer between 600 μ L and 750 μ L of the solution into a 5-mm NMR tube.
- **3** Positioning the NMR tube:
 - **a** Insert the NMR tube into a spinner turbine.
 - **b** Carefully place the spinner turbine into the top of the sample depth gauge.

- **c** Carefully center the sample on the thick black line in the middle of the depth gauge window
- **d** Remove the spinner-turbine from the depth gauge.

This step insures that the sample is positioned in the probe coil after insertion into the magnet.

Load the sample

For systems without a robot sample changer: Load the sample into the system.

- 1 Click **Eject** on the VnmrJ **Start > Standard** parameter panel to lift the current sample to the top of the magnet bore.
- **2** Carefully remove the current sample and replace it with the new sample.

3 Click **Insert** on the **Start > Standard** parameter panel to lower the sample into the magnet.

For systems with a robot sample changer:

 Load your sample into the robot tray and note the location. Avoid blocking the location of the sample currently in the magnet. 7600/7620-AS: The current location is displayed on the LCD information panel. 7600-AS robot tray

7510-AS: The location directly over the magnet bore is reserved for the sample currently in the magnet.

Tune the Probe

Probe tuning is required when there is a significant change in the polarity of the solvent. Changing from a non-polar organic solvent to a more polar organic solvent or aqueous solvent generally requires retuning the probe. Changes in the ionic strength of the solution (for example, low salt to high salt) also require retuning of the probe.

Tuning probes on systems with ProTune

Agilent NMR Systems spectrometers equipped with ProTune provide the features described in Table 42. To open the ProTune window, click **Tools > Probe Tuning > Auto Tune Probe**. For details on tuning a system using ProTune, see the *Agilent VnmrJ Spectroscopy User Guide*.

Feature	Button, label, or message	Description
Diagnostic and tuning	Motor Communication OK, Sweep Communication OK	Status of Ethernet communications between the module and the workstation
	Abort Command	Stops current command
	Drop-down list	Probe name and channel number
	Corrected Data/Raw Data	Toggles window to display corrected or raw data
	Tune Probe (MHz)	Tunes frequency
	Threshold (dB)	Criteria for successful tuning
	Refresh (times)	The number of times the plot should update with new data
	Center (MHz)	Sets center value of the sweep range
	Span (MHz)	Sets span value of the sweep range

 Table 42
 ProTune features and functions

4 Preparing for an Experiment

Tuning probes on systems with ProTune

Feature	Button, label, or message	Description
	Absval Plot/Polar Plot	Toggles between polar plot (imaginary and real reflection) and absolute value plot (reflection v. frequency).
	Cmd	Executes the ProTune command in the field.
Settings	Tune/Match Backlash	Difference between the number of steps traveled from the tune frequency and the number of steps traveled back to the tune frequency.
	Tune/Match KHz/Step Size	Number of KHz the dip moves in 1 step
	Tune/Match Reflection/Step	Minimum dip movement in one step with no regard to frequency. Positive values are inside the circle of origin, and negative values are outside the circle of origin.
	Dip Frequency	Frequency the dip occurs
	Dip Reflection	Reflection value at the dip
	Match at Freq MHz	Reflection at the desired frequency
Controls and output	Tune	Tune motor control
	Match	Match motor control
	×	Displays the graph in full scale view.

Table 42 ProTune features and functions (continued)

Manual tuning using mtune

If your system does not include ProTune, you can manually tune the system using **Tools > Manual Tune Probe**. The mtune routine runs in the graphics canvas and uses VnmrJ panels. You can also run manual tuning from the command line. For details on manually tuning the system, see the *Agilent VnmrJ Spectroscopy User Guide*.

4 Preparing for an Experiment

Optimize the Lock

Optimize the Lock

Under computer control, the lock system maintains a constant field at the sample as the static field generated by the superconducting magnet drifts slowly with time or changes due to external interference. Locking makes the resonance field of the deuterium in the deuterated solvent coincide with the lock frequency.

The lock level can be viewed by clicking on the ${\sf Lock}$ button on the hardware bar.

For information on how to perform lock optimization, see the Agilent VnmrJ Spectroscopy User Guide.

Shim the System

There are various ways to shim the system, either manually or using an automated Proshim method. For details on all shimming methods, see the *Agilent VnmrJ Spectroscopy User Guide*.

Shimming on the lock signal manually

Monitor the intensity of the lock signal while adjusting the shim settings. Each shim setting controls the current through shim coils that control magnetic field gradients in different directions. The Z direction must be parallel to the vertical direction of the probe, and it is for this reason that the height of the sample in the NMR tube affects the Z shim settings rather dramatically. For details on how to manually shim the system, see the Agilent VnmrJ Spectroscopy User Guide.

Figure 51 Location of shim buttons and controls

Proshim

With VnmrJ, you can create shim methods that can be saved and used again. The Proshim editor is used to create or modify shim methods.

To open the Proshim window to build or edit Proshim methods, click Tools > Standard Calibration Experiments > Shim Editor. For details on using Proshim, see the *VnmrJ Spectroscopy Users Guide*.

Use the Proshim editor (Figure 52) to:

- Display the method selected in the Current Method group
- Edit the method selected in the Current Method group
- Build a new method
- Save changes to a shim method
Preparing for an Experiment 4 Proshim

Figure 52 Proshim window

Manage shim method files

After making edits to the shim method and Start shim is run, you can save the edited Shim.

Use Manage shim method files to

- · Save the edited shim method as a local or system shim method
- Display a shim method
- Edit a shim method

4 Preparing for an Experiment

Use a Proshim method in automation

• Delete a shim method

Use a Proshim method in automation

Once a Proshim method is created, it can be used to shim a sample as part of an automated study.

- **1** Create a New Study and add the desired experiments to the Study Queue.
- **2** On the Sample Info page, use the Select shim map pull-down to choose a Proshim method.
- **3** The specified Proshim method will now be used when the study is submitted to acquisition.

Set up the Experiment

Set up the experiment using the pages in the **Start** tab in the Parameter Panel.

Start Acc	juire Process	Insert <mark>Eject</mark>	Lock scan	Setup hardware	Auto lock	Auto tune	Gradient shim	Logout
Sample Info Lock Shim Spin/Temp	Operator: vnmr1 Sample informa Sample name Sample directory Solvent Concentration Notebook Page	tion Clindamycin D20 DMSO CDCI3	Clear 3 D2O Othe mM	Comments Clindamycin 400-MR wit	i phosphate 1 h OneNMR pr	0 mg in D20 obe		

Figure 53 Sample Info tab of the Parameter Panel

- 1 Under the Start tab, select the Sample Info page.
 - **a** Fill in the information for the sample, select a **Solvent**, and enter the comments.
 - **b** Enter a name in the **Sample Name** field to name the sample.
 - c Define the sample, if desired, by filling in the optional Email, Concentration, Notebook, Page, and Comment fields.
- **2** Insert the sample (if not already loaded).
- **3** Regulate spinning and temperature on the **Spin/Temp** page.
- 4 Find Z0 and adjust the lock using the Shim and Lock pages.
- **5** Shim the system to adjust the field homogeneity using the controls provided on the **Shim** page.

4 Preparing for an Experiment

Set up the Experiment

Using VnmrJ, spectra are typically acquired using a Study (with or without a robot sample changer). A Study is a collection of one or more experiments that you want to perform on one or more samples. However, you can also acquire a single spectrum manually. This section contains information on how to acquire spectra using VnmrJ.

5 Acquiring Data

Acquire a Spectrum Manually

Acquire a Spectrum Manually

For manual acquisition,

- **1** Use the Experiment Selector or the Experiment Selector Tree in the Protocols vertical panel to select an experiment.
- 2 Use the pages in the Start and Acquire tabs of the Parameter Panel to view and change parameters. See the *Agilent VnmrJ Spectroscopy User Guide* for details on acquisition settings and pages.
- **3** When ready, click the green Acquire button at the top of the Parameter Panel to start acquisition.

Using a Study Queue to Acquire Data

A study is a ordered list of experiments that can be performed on any given sample. When data is collected using the Study Queue, information regarding that sample, including raw data, processed data, and plots, are linked together and automatically collected into a Sample Directory. These links allow customized information from one experiment (for example, calibrated pulse widths, optimized sweep widths, and solvent suppression conditions) to be automatically incorporated into subsequent acquisitions, and the automatic addition of high-resolution reference spectra to 2D plots.

Build a Study Queue

The Study Queue contains an ordered list of experiments you want to perform on one or more samples (with or without a robot sample changer). To create a study and add experiments to the Study Queue, use the following steps.

- **1 Protocols** vertical panel, under **Study Queue**, click **New Study**. This puts the Study Queue in Submit mode, where you can build a study and submit it to acquisition.
- **2** Double-click to select experiments from the Experiment Selector or the Experiment Selector Tree to add to the Study Queue.

Build a Study Queue

Experiment Selector Tree	₽ ×
 Favorites PROTON CARBON (H)PRESAT (H)wet1D (HH)gCOSY (HC)HSQCAD (HC)gHMBCAD (H)NOESY1D Studies Calibration Service 	

Figure 54 Experiment Selector Tree

Each experiment is added to the Study Queue and displayed as a node.

study Quei	16			р Х
Sul	bmit queue		Cancel	
New Sam	ple			
Sampleli	nfo [11:06]			
CARBON	L001 [8:40]]		
FLUORIN	E_001 [0:20	6]		
		_		
Nev	w study			
S	ubmit	to	Background	-
				_

Figure 55 Study Queue

Run a Study Queue

1 Click **Submit** to run the Study Queue.

The Acquisition Status display on the hardware toolbar shows:

- the task being performed
- time left for the task to run
- **Idle** when waiting for a process to complete, or **Inactive** when no process is being run.

△ Find Z0: 00:00:08

The Study Queue experiment nodes appear green if completed, blue if active, and yellow if queued.

NOTE

For systems with a robot sample changer:

The same Study Queue can be submitted to multiple samples by: changing the sample information, selecting a sample-tray location, and clicking **Submit**.

5 Acquiring Data

Using Express Submit with a sample changer

Using Express Submit with a sample changer

The Express Submit utility uses automation to quickly submit a sample to a specific tray location. To use Express Submit: a sample changer must be present and selected in Edit > System Settings > System config and a default experiment which will be added to each new study must be defined in: Edit > Preferences > Queue tab.

1 Right-click on the location in the Tray Display that holds the sample and select **Express Submit.**

	Populate Parameter	values
Samplename	Brucine	
Solvent	CDCI3	
Comments	brucine for analysis	
emailaddr	user@Agilent.com	page 21
and the set	24567	

Figure 56 Express submit - populate parameter values

- **2** In the Express Submit popup, choose the solvent, fill in the required fields (red labels), and fill in any of the optional fields as desired.
- **3** Click **OK** to submit the default experiment to that location and close the pop-up window.

Stopping an Experiment

There are four ways to stop an experiment:

- Click the **Stop** button.
- Click Acquisition in the VnmrJ menu bar, and then select Abort Acquisition.
- Click the **Stop** button in the bar at the top of the Parameter Panel (when either the **Start** or the **Acquire** panel is selected).
- Enter aa on the command line.

5 Acquiring Data

Stopping an Experiment

Loading Data from the Study Queue 158 Retrieving a Data Set 159 Fourier Transform the Data Set 162 Alter Processing Parameters 163 Interacting with the Spectrum Using the Graphical Toolbar 165 Aligning and Stacking Spectra 166 Aligning and Stacking Spectra 166 Displaying and Plotting Integrals 167 Baseline Correction 168 Working with Viewports 169 Save Current Process or Display Parameters 177

Once a spectrum is acquired, there are a wide variety of ways you can view and process the data. This section describes some of the most commonly used processing tasks. See the *Agilent VnmrJ Spectroscopy User Guide* for more detailed information.

Loading Data from the Study Queue

Loading Data from the Study Queue

1 Select and drag a completed experiment node to the graphics canvas to automatically process and load the data set.

In the following example, "Ethylindanone_Proton_01" has been selected from the Study Queue and is being dragged to the Graphics Canvas.

2 Click on the **Process** tab to display the data manipulation tools.

Basic processing tools are available on the $\ensuremath{\mathsf{Process}}\xspace > \ensuremath{\mathsf{Basic}}\xspace$ parameter panel.

Start Acquire	Process	Transform	Auto process	Display spectre	m A	Auto plot	Clear screen	Cancel	
Basic	-Sample inf	ormation		Process option:			-Plot options-		
Default Veighting Display More 1D Integration Cursors/Line Lists Plot Fext Output	Sample Solvent Sample ow Comments: Ethyl indar Recorded NMR prob Classical 8 Je time of	Ethylindan cdcl3 ner heiko mone, standard t on ProPulse 500 e and Protune tu t scan PROTON v 3. s. non-Spinnin	est sample with One ming with a recyc	FT data size ⊯ LineBroaden	128k 0.3	Hz	Parameters Integrals Peak Values Aut	Basic Partial None uto plot o preview	•
		Display spectru	Im	Sa	e curre	ent proces:	s/display paran	neters	

Retrieving a Data Set

Before you can reprocess a data set, the desired data set must be in the current workspace. For information on changing to a different workspace/experiment/viewport, see the *Agilent VnmrJ Spectroscopy User Guide*.

Use the file browser to open a data set

To retrieve the data: File> Open.

The resulting pop-up lets you access the desired data directory.

- **1** Select the desired file.
- 2 Click the **Open** button.

The selected data set is loaded into the current workspace.

9		Ομ	en ,	×
Choose Home Di	rectory: <mark>/ ho</mark>	ome/vnmr1/vnmrsys/data	R.	•
Dir 1		Dir 2	Dir 3	Dir 4
Look <u>I</u> n: 🗖 C	lindamycin			- A A - B =
📑 dirinfo				
🚺 Clindamy o	in_ASAPHM	QC_01.fid		
🥼 Clindamyo	in_CARBON	_01.fid		
Mr Clindamyo	in_gDQCOS	SY_01.fid		
/// Clindamyc	in_gHMBCA	D_01.fid		
Mr Clindamyo	in_gHMBCA	D_02.fid		
Clindamy o	in_gHMBCA	D_03.fid		
Clindamyc	in_gHSQCA	D_01.fid		
Clindamyo	IN_PHOSPHO	ORUS_ULTIO		
We Clindamy	IN_PHOSPHU	01 64		
www Chindamyc	IN_PROTON	_01.110		
- D				
File <u>N</u> ame:	Clindamycin	_gDQCOSY_01.fid		
Files of <u>T</u> ype:	.fid			-
				Open Cancel

Figure 57 Open dialog box

Use the VJ Locator to search the database

Use the VJ Locator to search the database

The VJ Locator, Figure 58, is a database browser that provides access to data sets, experiments, shim sets, commands, and so on.

	VJ Locator	_ 0	x
O Show spectroscopy ex	periments created by agil	ient and me <u>on any date</u>	ł,
< > <u>51</u> <u>52</u> <u>53</u>			
= name 🗸	apptype =	author ⊐	
ADEQUATEAD	J1-corr	chempack	
APT	Std1D	chempack	
ASAPHMQC	J1-corr	chempack	
ATCalib	Calibration	chempack	
ATN15Calib	Calibration	chempack	=
bashdNOESY	Sel2D	chempack	
bashdROESY	Sel2D	chempack	
bashdTOCSY	Sel2D	chempack	
BasicExpts	BasicTests	chempack	
BenzCalib	Calibration	chempack	
BilevelDec	Std 1D	chempack	
bsgHMBC	Sel2D	chempack	
bsgHSQCAD	Sel2D	chempack	
bsHSQCAD	Sel2D	chempack	
bsHSQCNOESY	Sel2D	chempack	
bsHSQCROESY	Sel2D	chempack	
C13APT	UserStudies	chempack	
C13DEPT	UserStudies	chempack	
c2hsqc	Crisis2	chempack	
c2hsqcse	Crisis2	chempack	
CARBON	Common	chempack	
CARBONecho	UserStudies	chempack	
ch3iCalib	Calibration	chempack	
ch3iPCalib	Calibration	chempack	
CIGAR	Jn-corr	chempack	
CIGARAD	Jn-corr	chempack	
COSY	Homo2D	chempack	
DEPT	Std1D	chempack	-

Figure 58 VJ Locator

The Locator provides quick access to information on all or part of the disk environment. The administrator determines the scope of the Locator actions.

Locator menu and controls

The magnifying glass and the current Locator statement are at the top of the VJ Locator window, as shown in Figure 59.

Figure 59 Locator menus and controls

Click the magnifying glass to open a menu of currently available Locator statements. This menu includes both statements provided by Agilent and those customized and saved by the user for searching the database. For more details on using the Locator, see the *Agilent VnmrJ Spectroscopy User Guide*.

Drag and drop items from the locator

To select an item, click the item in the **Locator** list. The selected item can be dragged to the graphics canvas or the Parameter Panel area for an appropriate action. For example, dragging a data set to the graphics canvas retrieves that data set into the current experiment workspace and displays the spectrum. Dragging a workspace to the graphics canvas selects that experiment workspace. Dragging and dropping an item has an action appropriate to the context. Often the same effect can be obtained by double-clicking an object.

Fourier Transform the Data Set

Fourier Transform the Data Set

Fourier transform of 1D and 2D data can be performed in a variety of ways. For more information, see Fourier transform of one-dimensional data and Fourier transform of two-dimensional data. For more information on Fourier transform, see the *Agilent VnmrJ Spectroscopy User Guide*.

Fourier transform of one-dimensional data

The data is typically Fourier transformed into a spectrum before analysis. The data is stored as time-domain data. The FT converts it to frequency-domain data. FT can be done using any of the following buttons/ menu:

- The blue-green Transform button in the Action Bar
- The **Transform All** button on the upper left of the Process / Default page (it is also on the Process/Weighting page)
- The Process button in the middle bottom of the Process / Basic page
- The $Process\,$ menu, which has options for either $Process\,$ or $Display\,1D\,$ and $Full\,Process\,$

Fourier transform of two-dimensional data

The FT of a 2D dataset can also be done in several equivalent ways:

- The blue-green Transform button in the Action Bar
- The **Full 2D Transform** button on the upper left of the Process / Default page (it is also on the Process/Weighting page and the Process/More 2D page)
- The Process button in the middle bottom of the Process / Basic page
- The Process menu, which has options for Full Process 2D
- The full processing of a 2D spectrum requires a Fourier Transform along two perpendicular directions, called t1 and t2. These two processing steps can be done one at a time if desired. This allows you to customize the processing parameters in each direction (if desired). For more details, see the corresponding Spectroscopy Guide.

Alter Processing Parameters

More information can be extracted from an NMR spectrum if the processing parameters are optimized specifically for that spectrum (optimized in ways which help answer the questions being asked). Examples include changing the parameters that control processes like zero-filling, weighting functions (and apodizations), linear prediction, referencing, or integral reset points. These parameters are typically controlled using the **Process** tab.

Zero-filling

Zero-filling is controlled by the Transform Size controls, which are located on multiple pages, such as Basic, Default, Weighting, and More 1D pages. If the number of points used is larger than the number of points acquired, zero filling is being performed. This helps to better define shapes of the peaks. It is common and advantageous to transform twice as many points as were acquired. The user can transform fewer acquired data points, which allow the FT calculation to be faster, but at the expense of a less well-defined lineshape.

Weighting and apodization

The detailed parameters controlling the weighting functions and functions that are applicable to the FID before the FT, are defined in the Weighting page in the Process tab. There is also a simplified set of controls on the Default page. Typically, weighting functions are used to increase signal-to-noise, at the expense of broader lines. These functions are used to remove truncation wiggles from the spectrum as needed. The "apodization" process is when the weighting functions are used to remove truncation wiggles

Linear prediction

All of the detailed parameters that control linear prediction are located in the **More 1D** page. There is a simplified set of controls on the Default page. The **Auto** buttons set up a default set of conditions for either forward or backward linear prediction. Many of the protocols in the Experiment Selector set up appropriate parameters for using linear prediction automatically. For more detailed information about controlling linear prediction, see the *Agilent VnmrJ Spectroscopy User Guide*.

Referencing

Automatic processing uses a routine to provide default referencing for the spectrum. To alter the referencing, use the controls located in either the Default or the Display pages. Referencing By Solvent or By TMS automatically analyzes the spectrum. Referencing the spectrum to a certain cursor position requires the user to place the cursor at the desired location in the spectrum and type in the desired numerical value for that position in the Reference cursor to entry box.

Integration

Integral regions are automatically set up for Proton spectra during automated processing. Further manipulations of the integral can be made by using the controls in the Integration page on the Process tab, or in the graphical toolbar, see Interact with the spectrum using the graphical toolbar.

Phasing

Proper spectral phasing is automatically set up for all spectra during automated processing. Further manipulations of the phasing can be made using the graphical toolbar.

Interacting with the Spectrum Using the Graphical Toolbar

Interacting with the Spectrum Using the Graphical Toolbar

The graphics control bar for the active viewport is to the right of the graphics canvas. Use the buttons in the bar to control the interactive display in the graphics canvas. For details on specific toolbars, see

"Common graphics display toolbar controls" on page 19

"1D display spectrum toolbar controls" on page 20

"nD display toolbar controls" on page 21

"Display FID toolbar controls" on page 23

"Annotation toolbar controls" on page 24

Integration and graphics controls

The graphics controls for displaying, and plotting integrals is located on the "1D display spectrum toolbar controls" on page 20.

Aligning and Stacking Spectra

Aligning and Stacking Spectra

Spectra can be a mixture of 1D and 2D data sets, all 2D data sets, or all 1D data sets, provided the following requirements are met:

- All selected viewports need to use a common scale.
- Data in the viewports may have different nuclei, different spectral widths, or different spectral regions. The common scale is determined based on data in all selected viewports and determines whether alignment or stacking is possible. Overlaid and stacked spectra are drawn based on the common scales.
- Alignment is enabled if more than one axis in more than one viewport has the same axis (H1, C13 etc).
- Stacking is enabled when data in all viewports have the same axis/axes.

For details on aligning and stacking spectra, see the Agilent VnmrJ Spectroscopy Users Guide.

Displaying and Plotting Integrals

The graphical controls for displaying and plotting integrals are located on the Display 1D Spectrum toolbar (Figure 60). For step-by-step instructions, see the *Agilent VnmrJ Spectroscopy User Guide*.

Figure 60 Controls for displaying and plotting integrals

Baseline Correction

Baseline Correction

Most operations performed on spectra assume a "good" baseline. Line lists, integrations, resolution measurements, 2D volume integrations, and so on measure intensities from "zero" and do not perform any baseline adjustments. Perform a baseline correction operation before performing further data reduction if the baseline in your spectrum is not "good." Two types of baseline corrections are provided, linear and non-linear, and are available using the buttons on the **Display** page of the **Process** tab.

Working with Viewports

All VnmrJ graphics are displayed in frames. The viewport has a default frame that occupies the entire viewport graphics area. An inset frame initially shares the same workspace and data as the original frame and is configured in the same way as the default frame. Insets are configured and modified using the Frame vertical panel. (See "Frame vertical panel" on page 41.) For more information on creating and changing inset frames, see the *Agilent VnmrJ Spectroscopy User Guide*.

Using Viewports Controls

Using Viewports Controls

Use the Viewport vertical panel to control the appearance of data in the viewports. See "Viewport vertical panel" on page 45. The viewport controls are present if there are two or more viewports.

Show and hide viewports

The selected viewports are arranged on the graphics canvas based on the layout selection. See "Set viewport layout" on page 171.

- **1** In the Viewport vertical panel, select the check box next to each viewport to show on the graphics canvas.
- 2 Clear the check box next to a view port to hide the viewport.
- **3** Point the cursor to the box next to the viewport label and hold down the left mouse button to temporarily hide a viewport.
- **4** Release the mouse button to show the viewport.

The viewports do not change their layout on the graphics screen. This tool is used when overlay viewports is selected.

Make a viewport active

1 In the Viewport vertical panel, click the radio button associated with a viewport to make the viewport active.

The title bar of the active viewport is colored. The inactive viewports have gray title bars.

2 Use the horizontal and vertical panel tools to work on the data in active viewport or begin data acquisition using the active panel.

Experiments started from the current active panel are run in the order of submission. Systems running an automated sample changer use only experiment 1 (which is in viewport 1) to submit samples to the automation queue. All other viewports are used for data processing and analysis.

Add a label to the viewport

The default label for a viewport is the currently loaded experiment file name.

- **1** In the Viewport vertical panel, click inside a viewport label box (viewport does not have to be active).
- 2 Select the contents of the box and overwrite the text with new text.
- **3** Click outside the text box.

A new label is now associated with this viewport.

Set viewport layout

In the Viewport vertical panel, select a layout icon to arrange the view ports on the graphics canvas. Click the **Overlay Viewports** to stack viewports on top of one another. The overlay layout is useful for placing high resolution 1D spectra on the appropriate 2D axes.

Table 43Viewport layout

lcon	Description
4	Auto layout arranges viewports in an optimized row by column matrix
	Horizontal layout of viewports
111	Vertical layout of viewports

Synchronize cursors and axes

Use the following controls in the Viewport vertical panel to synchronize cursors and axes.

Set crosshair, fields, and axis display options

Check box	Description		
Sync cursor	Select this check box to link and synchronize the cursors and crosshairs in multiple viewports.		
Sync Axis	Select this check box to link and synchronize axes in multiple viewports. Axis is synchronized to the current active viewport.		

Table 44Cursors and axis

Set crosshair, fields, and axis display options

Use the following controls in the Viewport vertical panel to turn on or off crosshair, fields, and axes.

 Table 45
 Crosshair, fields, axis display

Check Box Show crosshair		Description						
		Displays cross hair and chemical shift(s) of the cursor position when mouse is moved over the spectrum. This is a useful function when the fields are not shown, not in cursor mode (default mode), or chemical shift of a peak without moving the left cursor is required while in the cursor mode.						
Show fields		Select this check bo canvas:	ox to show informa	tion fields at the bo	ottom of the active	viewport		
	vs 111.7	sp(ppm) 35.78	wp(ppm) 65.00	first 1	last 4	step 1		
Show axis		Select this check bo	ox to show the axis	or remove the che	ck to hide the axis			

Assign colors to spectra by viewport

Use the Viewport vertical panel to assign colors to spectra displayed in viewports.

Viewport

Check box	Description	
Color by viewport	Select this check box to display the spectral data using colors assigned by the viewport, see Figure 13.	Steepet Wantspace Label Hide Active Via Sect Via Sect
	 Spectra are displayed using a different color for each viewport if the box is checked. The spectra are displayed using the defaults assigned in the Display options window if this box is not checked. Change a color assignment: Click on the dropdown color menu for a viewport and select a color for the spectral display in the viewport. 	Activate colors by checking this box
		Figure 61 Setting Spectra Colors by

 Table 46
 Assigning Colors to Spectra

Using viewports as a spectral interpretation tool

The **Viewports** tool displays and presents data and provides a powerful interface to interpret spectral data. A collection of NMR data sets acquired on a given sample are typically more informative when considered together and simultaneously. Information presented in a 1D data set is often complimentary to that provided by a homonuclear or heteronuclear 2D data set. Many 2D data sets are closely linked from an interpretational point of view. Viewports provide powerful options for interrogating spectral data.

Overlaying homonuclear data sets

When interpreting homonuclear data, concurrently consider COSY or scalar coupling interactions (that is, through-bond) with NOESY or dipolar coupling interactions (that is, through-space). **Overlaying homonuclear data sets**

For example, Figure 62 shows the graphics window with COSY and NOESY data sets in Viewports 1 and 2, respectively, collected on the ethylindanone standard sample. The **Overlay** and **Align Spectra** buttons have been used to provide a composite display. By selecting the **Show Crosshair** check box, a yellow cursor line, or crosshair, is displayed simultaneously in each window. The crosshairs are linked, allowing responses from one data set to be immediately interpreted with respect to the other. This display clearly differentiates those responses observed in the NOESY spectrum that are derived from long-range relaxation from the vicinal and geminal responses.

Figure 62 Overlaid COSY and NOESY spectra of ethylindanone

COSY responses are shown in green, while the phase-sensitive NOESY data are displayed in blue and yellow.

6

Cross referencing heteronuclear data sets

Many heteronuclear data sets provide complimentary insights into molecular structure. As shown in Figure 63 on page 175, a Viewports overlay of HSQC and HMBC data allows visualization of both 1-bond and long-range coupling in a single, easy-to-interpret arrangement. This type of display is very valuable when spectra become congested, and allows unambiguous assignment of long-range responses to 1-bond J_{CH} spin pairs.

Figure 63 Overlaid HSQC and HMBC spectra of ethylindanone

Cross referencing heteronuclear data sets

HMBC responses are shown in green, while the phase-sensitive multiplicity-edited HSQC data are displayed in blue (odd number of protons) and red (even number of protons).

6

Save Current Process or Display Parameters

In the **Default** page of the **Process** tab, there is a button labeled **Save Current Process/Display Parameters**. Click this button to save a parameter set in the dataset with all the current processing and display information, in a manner that is suitable for GLP requirements. This action stores parameters such as phasing, integral regions (resets points and isadj), and the display information that would be stored by the s1 and r1 commands (described above). (It does not store information about referencing, symmetrization, baseline correction, or drift correction.) The next time any **Process** button is clicked, the last-stored set of display parameters will be used to display the resulting spectrum.

Save Current Process or Display Parameters

Plotting Data

Plotting Data Saved as a Study 180 Saving and Printing a Graphics File 182 Plotting the Data 183 Changing Color Themes 187 Pasting Text into a Text Editor or Other Application 188

7 Plotting Data

Plotting Data Saved as a Study

Plotting Data Saved as a Study

1 In the Parameter Panel, click **Process > Plot** to display the plotting tools.

Start Acquire	Process Transform Auto process	Display spectrum Auto plot Clear scr	reen Cancel
Basic Default Weighting Display More 1D Integration Cursors/Line Lists Plot Text Output	Spectral graphics Spectrum Current Full array FID Agilent Custom None Fintegral lines Full Partial ppm Hz Integral values Scaled ppm Hz Normalized Molecule	Lists Parameters Basic All None Integral values Integral list Scaled Normalized Peak positions Peak list Peak list Peak list Miniplots	Send to HP [color] Hz per mm: 15.4 Print double-sided Preview Print

Figure 64 1D plot setup in the Plot page of the Process tab

These preferences, once set, are retained for a given spectrum. By default, most of these options are turned off the first time that the Plot panel is accessed for a given spectrum, so it will usually be necessary to turn several options on, especially the Spectrum **Current** check box, which toggles whether or not the plot includes a graph of the spectrum.

Auto plotting tools are also available on the **Process > Basic** parameter panel.

Start Acquire	Process Transform Auto	process Display spectrum	Auto plot Clear screen	Cancel
Basic	Sample information	Process options	Plot options	
Default Weighting Display More 1D Integration Cursors/Line Lists Plot Text Output	Sample Ethylindanone Solvent cdcl3 Sample owner heiko Comments: Ethyl indanone, standard test sam Recorded on ProPulse 500 with C NMR probe and Protune tuning Classical 8 scan PROTON with a r le time of 3.s. non-spinning	FT data size 128	ik V Hz Hz A A Aut	Basic Partial None
	Display spectrum	pectrum Save current process/display parameters		

Figure 65 Plot options in the Basic page of the Process tab
- **2** Use the Graphics Toolbar to adjust the displayed spectrum. Hovering the mouse over the icons displays tool tips.
- **3** Click **Auto Preview** to render a duplicate of the displayed spectrum in Adobe Reader.

The Plot View dialog box appears.

9		Plot View	×
Plot name Send to:	 ✓ Plotter File email 	Printer2 (color)	.pdf
	[OK Cancel	

- **a** Review the formatted plot and readjust as needed.
- **4** Select one or more check boxes on the **Plot View** dialog box to print, save as a PDF file, or email the plot.
- 5 Click OK.

Saving and Printing a Graphics File

Saving and Printing a Graphics File

After processing, the 1D or 2D spectrum is displayed in the graphics canvas so that the scale, expansion, and threshold can be adjusted.

To print the spectrum:

- 1 Click File from the menu.
- 2 Select Print Screen.

The pop-up in Figure 66 appears.

- 3 Select the name of the printer to print to it.
- **4** Select the print area, either **Viewports** or **VnmrJ Window**. Viewport will capture the contents of the Viewport, while VnmrJ Window will capture the entire VnmrJ window.
- 5 Choose the number of copies to print.
- 6 Click the Print or the Preview button.

Figure 66 General tab of the Print Screen pop-up

Plotting the Data

Plotting is based around the concept of a plot file. Setting up and submitting a plot can be done from the vertical and horizontal panels and from the command line. The **Plot** parameter page is accessed from the **Process** tab after the spectrum or FID is displayed. Items selected on the **Plot** parameter page (Figure 67 and Figure 68) are added to a temporary plot file. The Preview button opens the plot in Adobe Reader where you can preview it, then save or send it to a printer or email. The **Print** button submits the plot file to the selected printer.

For details on plotting data, see the Agilent VnmrJ Spectroscopy User Guide.

Plot options for 1D data

Start Acquire	Process Transform Auto pro	cess Display spectrum A	uto plot Clear screen	Cancel
Basic Default Weighting Display More 1D Integration	Spectral graphics Spectrum Current Full array FID Logo Addingt Curtem Provide	Lists Parameters Basic A	JI • None	HP [color] Hz per mm: 15.4 Print double-sided
Cursors/Line Lists Plot Text Output	Agnent O Custom Browse None	Integral list Scaled ON	lormalized	Preview Print
	Integral lines Peak label Full Partial ppm Integral values Scaled ppm	Hz Peak positions Hz Peak list	Iz	
	O Normalized Molecule	Comments	Miniplots	

Figure 67 The Plot parameter page for a 1D data set

Table 47	Options in the	1D Plot panel
----------	----------------	---------------

ltem	Description
Spectral graphics	
Spectrum	Select how to display the spectrum on the plot: Current, Region, Full array, FID

Plotting the Data

Item	Description
Logo	Select to include a logo on the plot: Agilent, None, or Custom (If Custom, click Browse and then find and select the logo file to use.)
Additional graphics options	
Integral lines	Select to include full or partial lines on plot
Integral values	Select to include scaled or normalized integral values on plot
Axis	Select to display axis on plot in ppm or Hz
Peak labels	Select to display peak labels on plot in ppm or Hz
Molecule	Select if molecule is displayed on graphics canvas to include it in the plot
Lists	
Parameters	Select level of detail to include for parameters list: Basic, All, or None
Integral values	Select Integral list to display integral values, then select Scaled or Normalized
Peak positions	Select Peak list to include list of peak frequencies in lists, then select units of ppm or Hz
Comments	Select to include comments in lists
Miniplots	Select to include miniplots in lists
Send to	In the drop-down menu, select the printer to use.
Print double-sided	If the selected printer has the ability to print double-sided, select this option to enable double-sided printing for the plot.
Preview	Opens the plot in Adobe Reader with currently selected options, along with the Plot View pop-up where you can select to save the file, print it, or email it.
Print	Sends the plot with currently selected options to the selected printer.

Table 47 Options in the 1D Plot panel (continued)

n Y

Plot options for 2D data

Start Acquire	Process Transform	Auto process	Display spectrum	Auto plot	Clear screen	Cancel	T ^
Basic Default Weighting Display More 2D Integration Cursors/Line Lists	Spectral graphics Invert phase Mod 2D contours Positive Neg Number 20 Space	ecule F1	s 2D plot si F2 As Logo Agilen None	ze displayed @ t O Custom	Fit to page	Lists Parameters Basic Comments	All None Miniplots
Text Output	Overlaid 1D spectrum HiRes top spectrum HiRes side spectrum	(F2): Saved 1D f n (F1): Saved 1D f	id 👻 Ethylindar id 👻 Ethylindar	one_PROTON one_PROTON	_03 _03	HP [color] Hz per mm:	▼ 52.1 e-sided
						Preview	Print

Figure 68 The Plot parameter page for a 2D data set

ltem	Description
Spectral graphics	
Invert phase	Click to invert phase
Molecule	Select if molecule is displayed on graphics canvas to include it in the plot
Trace axis	Select F1 or F2
2D plot size	Select As displayed or Fit to page
2D contours	Select to include Positive, Negative, or Both
	Enter Number of contours to display
	Enter the Spacing for the contours
Logo	Select to include a logo on the plot: Agilent, None, or Custom (If Custom, click Browse and then find and select the logo file to use.)

Table 48 Options in the Plot parameter page for a 2D data set

Plotting the Data

ltem	Description
Overlaid 1D spectrum	Select to include 1D spectrum at the top and side of the 2D plot.
	HiRes top spectrum (F2)
	HiRes side spectrum (F1)
	For each, select Saved 1D fid, Projection, or Other workspace.
Lists	
Parameters	Select level of detail to include for parameters list: Basic, All, or None
Comments	Select to include comments in lists
Miniplots	Select to include miniplots in lists
Send to	In the drop-down menu, select the printer to use.
Print double-sided	If the selected printer has the ability to print double-sided, select this option to enable double-sided printing for the plot.
Preview	Opens the plot in Adobe Reader with currently selected options, along with the Plot View pop-up where you can select to save the file, print it, or email it.
Print	Sends the plot with currently selected options to the selected printer.

Table 48 Options in the Plot parameter page for a 2D data set (continued)

Changing Color Themes

Printer and Plotter color output is defined using the **Styles and Themes** window, **Plot** option. which provides access to the display colors and the VnmrJ interface colors. You access the **Styles and Themes** window using **Edit** > **Display Options**. There, you can set colors and save the color "theme" to a file. Once you save a color theme file, you can import and use it at a later time. Setting the styles and themes options are described in detail in the *Agilent VnmrJ Spectroscopy User Guide*.

UI O Display	Plot Defau	lt	•	Save	Del	ete	✓ Hex	₽ AA
Canvas DPS	Contours							
Data colors			_	Lines				
Spectrum 1	0x7D8297	-	1					
Spectrum 2	0x999999	-	1	Line thickr	ness	1	pixels	
Spectrum 3	0xB3B3B3	-	1					
Spectrum 4	0x666666	-	1	Axis		0xA	BB1C3	-
Spectrum 5	0x808080	-	1	Integral li	ne	0x8	2CC03	-
Spectrum 6	0x999999	-	1	Integral n	nark	0x0	F8703	-
Spectrum 7	0xB3B3B3	-	1	Peak mai	ĸ	0x0	085D5	-
Spectrum 8	0x666666	-	1	AV peak	box	0x0	00000	-
Spectrum 9	0x808080	-	1	PH peak	box	0x0	554A3	-
Real FID	0x081B2F	-		·				
Imaginary FID	0x495268	-	1					
Absval FID	0xFF0000	-						
FID envelope	0xFC6903	-						
Background colo	s							
Canvas	0×BEBEBE	-		Selection	0×0	03D3D	3 🔻	
Plot box	OxFFFFFF	-		Border	0x4	49526	8 🔻	

Figure 69 Styles and Themes window

7 Plotting Data

Pasting Text into a Text Editor or Other Application

Pasting Text into a Text Editor or Other Application

Text output that appears in the **Integration**, **Cursors/Line Lists/Text Output** parameter pages can be pasted into a text editor to be saved or used elsewhere.

- **1** Highlight the text to be pasted by clicking the left mouse button and dragging the mouse to the end of the desired text.
- **2** Release the mouse button at the end of the desired text. The selected text is highlighted indicating what has been selected.
- **3** Start the text editor or application and place the mouse cursor on the active document.
- **4** Click the middle mouse button to paste the highlighted text into the text editor.

ine ArrayedSpectra	Exp:2 Seq: F	Proton Index: 1 *Unsaved Document 1 - gedit	1.021
1D 2D T		Image: Sector going sector	1.036
me Viewport		Lndex freq(ppm) intensity 1 1.03626 40.9667 2 1.0213 84.8728 3 1.00634 37.4915	
Selector Fra	3.4 3	T 3 Ln 1, Col 1 INS	1.2 1.0
nent S	Start Acquire P	Process Transform Autoprocess Display Spectrum Clear Screen Cancel	
Study Queue Experim	Basic Default Weighting Display More 1D Integration Cursors/Line List Plot Text Output	Cursor(s) Peak Thresh Display Line List Find Peaks in Array For One Cursor on Screen index freq(ppm) intensity 1 Place on nearest line 1 1.03626 40.9667 Show linewidth 1 1.03626 40.9667 Move transmitter 1 1.00634 37.4915 For Two Cursors on Screen 3 1.00634 37.4915 Show signal to noise 1 40.97 1 Move spectral width 1 40.97 2 Plate on nearest line 3 37.4915 3 50.01 Move transmitter 1 40.97 2 1 84.67 Show signal to noise 3 1 37.49 3 3 3 Move spectral width Inset spectrum 1 4 1 4 1	

Figure 70 Contents of the Display Line List text box copied into the Linux gedit text editor.

VnmrJ 4.2 Familiarization Guide

8

Customizing VnmrJ Actions

Clone a New Study 190 Clone Current Study 192 Clone Current Experiment 193 Clone Location Queue 194 Command and Protocol Buttons 195 Edit Parlib 198

VnmrJ has incorporated tools that allow each user account to be customized to suit the individual user tastes. There are 6 tools that can be used to create new buttons in the Experiment Selector, each generating a distinct button. These tools are located in the **Tools > Study Clones** menu. This section describes how to use these tools to customize the Experiment Selector.

8 Customizing VnmrJ Actions

Clone a New Study

Clone a New Study

This tool allows the user to create a new study based on those protocols already present in the Experiment Selector. Studies created using this tool will inherit any subsequent changes made to those protocols. For instance, if a Study Clone is made that includes the CARBON protocol, any subsequent changes made to the behavior of the CARBON protocol will be reflected in the Study Clone, also.

This tool is commonly used to create a composite study of multiple experiments. It is also very useful when a user wants to create a customized copy of an existing protocol without changing the original protocol (that is, a new "**0_PROTON**" button with a very long relaxation delay, or an "**overnight_CARBON**" button that is parameterized to run all night).

Selecting this tool places the software into Submit Mode and opens an empty study in the Study Queue. The user can then populate this study with any experiment(s) from the Experiment Selector and customize each node in the queue as desired (double click on the node to open it in the current workspace, make any changes, and click the green **Save** button on the parameter panel toolbar). Once the study is configured as desired, click the yellow **Save Study** button on the bottom of the **Study Queue** window. This will open the **Save Study Queue** popup.

- In the Save Study Queue popup window:
- **1** Select the **Allow Customization** check box if you wish to allow users to customize the nodes in this study on a per-sample basis. Deselecting the check box will lock the study so that users can make no changes.
- **2** Select the **Include Sample Tags** check box to write the current sampletags into the new study clone.
- **3** Choose where the new study will be saved from the **Applications Directory** drop-down menu.
- **4** Choose the tab in the **Experiment Selector** where the new button will appear by selecting an existing tab from the drop-down menu, or select **New Tabname** from the list and fill in the tabname field to create a new tab.
- **5** Fill in the Study Name field with the name of the study. This is the name that will appear on the new button. This name can not be the name of a macro currently in the search tree.

6 Click Save/Update to create the new button.

The Experiment Selector will now be updated to reflect the addition of the new study. Clicking this button will build the saved study in the study queue or in the current experiment, as appropriate. 8 Customizing VnmrJ Actions Clone Current Study

Clone Current Study

This tool is identical to Clone New Study ("Clone a New Study" on page 190), except that it acts on the study currently present in the Study Queue. This allows the user to clone a completed study or to create a study clone while entering a study to be run on a sample.

Clone Current Experiment

This tool is typically used when the user wishes to clone the experiment in the current workspace. In contrast to Study Clones ("Clone a New Study" on page 190 and "Clone Current Study" on page 192), the **Clone Experiment** tool creates a new parameter file that is read in directly when the new button is selected. This truly yields an exact duplicate of the parameter set in curpar that can be used in a study queue. This tool is commonly used when it is desired to collect exactly the same data set on a large number of samples.

Before selecting this tool, configure the experiment in the current workspace as desired. Then select Tools> Study Clones> Clone Current Experiment. The Clone Experiment popup is opened.

- 1 Select the **Allow Customization** check box if you wish to allow users to customize the parameters in this experiment on a per-sample basis. Deselecting the check box will lock the experiment so that the users can make no changes.
- 2 Select the **Include Sample Tags** check box write the current sampletags into the new experiment clone.
- **3** Choose where the new experiment will be saved from the **Applications Directory** drop-down menu.
- 4 Choose the tab in the **Experiment Selector** where the new button will appear by selecting an existing tab from the drop-down menu, or select **New Tabname** from the list and fill in the tabname field to create a new tab.
- **5** Fill in the **Study Name** field with the name of the study. This is the name that will appear on the new button. This name can not be the name of a macro currently in the search tree.
- 6 Click Save/Update to create the new button.

Clone Location Queue

This tool allows the user to create a study clone from a location queue in the sample tray display.

First, select a location in the sample tray (that already has a study queue assigned to it) by clicking on that location. Then select **Tools > Study Clones > Clone Location Queue**. This will open the **Save Study Queue** popup.

- In the Save Study Queue popup window:
- **1** Select the **Allow Customization** check box if you wish to allow users to customize the nodes in this study on a per-sample basis. Deselecting the check box will lock the study so that the users can make no changes.
- **2** Select the **Include Sample Tags** check box write the current sampletags into the new study clone.
- **3** Choose where the new Study will be saved from the **Applications Directory** drop-down menu.
- **4** Choose the tab in the **Experiment Selector** where the new button will appear by selecting an existing tab from the drop-down menu, or select **New Tabname** from the list and fill in the tabname field to create a new tab.
- **5** Fill in the **Study Name** field with the name of the study. This is the name that will appear on the new button. This name can not be the name of a macro currently in the search tree.
- 6 Click Save/Update to create the new button.

Command and Protocol Buttons

This tool serves two purposes. Creating a Command Protocol allows the user to execute a VNMRJ command or macro at run time as part of a Study Queue. This function does not collect data but returns to the next item in the study upon completion. The Experiment Protocol function is used to generate an experiment button in the Experiment Selector (that is, it generates the appropriate XML file) to call a pre-existing set-up macro for loading a pulse sequence and parameter file. In other words, this tool can be used to import pre-VJ3 experiments and their associated files into the current system.

My Library	·
	Show Details Delete
Type	Experiment Command
Name	CARBON
Tabname	std1D Select OF
	std1D Enter
MenuLevel	
Submenu	
Label	CARBON
Action	Execute CARBON
	Recall current parameters (rtp)
Req. Exp	
ExpTime	8 min, 44 sec
AppDir	Home account 🗸
	AutoPrompt customization
	Make protocol

Command and Protocol Buttons

To create a Command Protocol:

- 1 Select Tools > Study Clones > Command and Protocol Buttons to open the Protocol popup.
- 2 Confirm that the **Command** check box is selected.
- **3** Fill in the name to be used for the protocol.
- **4** Choose the tab in the **Experiment Selector** where the new protocol will appear by selecting an existing tab from the drop-down menu, or select **New Tabname** from the list and fill in the tabname field to create a new tab.
- 5 Confirm that the **Execute** check box is selected
- 6 Fill in the field with the name of the macro to be run in the protocol.
- 7 Choose where the new protocol will be saved from the App Dir drop-down menu.
- 8 Click Make Protocol.
- **9** The new Command Protocol will now appear in the Experiment Selector.

To create an Experiment Protocol:

- **1** First, execute the set-up macro for the desired experiment in the current workspace and parameterize the experiment as desired.
- 2 Select Tools > Study Clones > Command and Protocol Buttons to open the Protocol popup.
- 3 Confirm that the **Experiment** check box is selected.
- 4 Fill in the name to be used for the protocol.
- **5** Choose the tab in the **Experiment Selector** where the new protocol will appear by selecting an existing tab from the drop-down menu, or select **New Tabname** from the list and fill in the tabname field to create a new tab.
- **6** Choose the **Recall** current parameters check box to use the parameters in curpar as the basis for loading the new experiment, or choose the **Execute** check box and fill in the name of a set-up macro to parameterize the new experiment.

- 7 Fill in the **Req Exp** field with a rational starting experiment(s) as desired.
 - **a** Leaving this field blank will cause the new protocol to load from the default set-up macro (based on the value of tn) when used in the Study Queue, or it will load on top of the parameters in the current workspace when used in Review mode.
 - **b** By filling in this field, the new protocol will check for the presence of the specified experiments and operate on the last such parameter set that exists in the sample queue, or it will add the required experiment to the queue if one doesn't already exist. This is the default behavior for the protocols supplied with the system and is the recommended action.
- 8 Choose where the new protocol will be saved from the App Dir drop-down menu.

9 Click Make Protocol.

The new protocol will now appear in the Experiment Selector. Assuming that the **Required Experiments** field was populated appropriately, the protocol will behave as do all the standard system protocols. Adding the new protocol to a Study Queue will preserve the sample tags and locked parameters (that is, sw, pw, solvent suppression parameters, etc.) from the last valid starting data set in that queue, and the node can be customized as desired.

Edit Parlib

This tool is used to create a complete protocol, including a set-up macro, parlib entry, XML file, etc., for inclusion in the Experiment Selector. This tool is intended to be used only when the starting point is a VJ3 system protocol.

The **Edit Parlib** tool is commonly used to add a new protocol for acquisition of data on a nucleus different than those supplied in the standard Experiment Selector interface (i.e., 29 Si, 17 O, 23 Na, etc.).

After configuring the parameters in the current workspace appropriately:

- 1 Select Tools > Study Clones > Edit Parlib to open the Edit Parlib popup.
- 2 Fill in the name to be used for the protocol.
- **3** Choose the tab in the **Experiment Selector** where the new protocol will appear by selecting an existing tab from the drop-down menu, or select **New Tabname** from the list and fill in the tabname field to create a new tab.
- **4** Populate the **Lock Parameters** field with those parameters whose values should be retained by subsequent experiments.
- **5** Fill in the **By default, start with** field with any protocol that must be executed before the new one being created.
- **6** Fill in the **User Customization** field with any customization that should be performed at set-up time.
- 7 Click Save/Update.
- 8 The new protocol will appear in the Experiment Selector.

VnmrJ 4.2 Familiarization Guide

9

Customer Training

Training 200 Previous Experience with Agilent NMR Software 201 Documentation 202 Sample Requirements 203 Introduction to VnmrJ 4 Operation 204 Overview of the VnmrJ 4 Operation 205 Basic (Automated) VnmrJ 4 Operation 206 Detailed (Manual) VnmrJ 4 Operation 207 Linux Training 211 VnmrJ 4 Administration 213 VnmrJ 4 Administration - Quick Start 214 Hardware Overview 216 Customer Support Information 218 Lock Frequency (lockfreq) 219 Administrative Chores 220

This chapter describes the familiarization training provided by the Agilent installation engineer at time of installation. This training is intended to be a general overview of the instrument, basic maintenance requirements, software features, data acquisition and storage, file maintenance, and other routine tasks. Comprehensive training classes are offered at various Agilent Applications Laboratories around the world. Call your sales representative or contact the Agilent Technologies NMR systems office nearest you for class offerings, schedules and cost.

9 Customer Training Training

Training

The installation engineer is providing this training as a service to the customer to use the spectrometer. The engineer may not be able to answer detailed questions beyond the scope of this training. There is no expectation that the installer can provide all of the training needs for the customer. Training is most effective if the end user performs all the tasks.

This training covers only basic operation of a solution-state NMR spectrometer – it does not cover the operation of spectrometers doing bio-NMR (samples in H2O), solids, or imaging applications. This training is for a maximum duration of one day, and for a maximum attendance of one customer for each training session. To obtain more complete training, or to train a larger group of people at your customer's facility, please suggest that the customers attend one of Agilent's applications lab training classes, arrange an on-site training visit, call the Agilent Technical Assistance Center (TAC) or your local salesperson, or refer to the appropriate manual.

Customer Training 9

Previous Experience with Agilent NMR Software

Previous Experience with Agilent NMR Software

If customers are already familiar with certain topics, they may choose to skip the topics. Customers may have no knowledge of how this version of software has changed since their last experience with a previous version of VnmrJ software.

Documentation

Give an overview of the documentation. Explain where to start looking for information and where to get help.

- QuickStart Guide start all new users here.
- *VnmrJ* 4 *Administration Guide* start all new system administrators here. This provides quick start information and detailed explanations.
- *VnmrJ* 4 *Familiarization Guide* gives an overview of the VnmrJ 4 software and how to use it to acquire data. Also provides descriptions of the User Interface.
- Spectroscopy User Guide a more advanced manual for experienced users, or for those performing more advanced experiments.
- Command and Parameter Reference Manual (CPR) a favorite reference manual, which contains details on every command, macro, and parameter.
- User Programming Manual (Optional, advanced) the primary manual for details about writing new pulse sequences, creating shapes, or modifying parameter characteristics. Any activity that might be called "programming" is documented here.
- Additional manuals (Probe manuals, accessories) these are general reference material.

Show the customer how to get the documentation.

- Various hard-copy manuals are shipped with the spectrometer.
- Purchase hard copies.
- Visit the Agilent Spinsights site, http://www.spinsights.net. A password is required.
- Access the online documentation using VnmrJ 4 Help, using Help > Manuals.
- The installation DVD downloads documentation located on the VnmrJ 4 interface.

Sample Requirements

- **1** Review with the end user the contents of the *Quick Start Guide*, including sections on how to prepare and load a sample.
- **2** Point out the depth gauge, show how to use it, and how to document the number to which it is currently set. (The customer should document this number in a logbook.)

Introduction to VnmrJ 4 Operation

Introduction to VnmrJ 4 Operation

Instruct the customer to follow all the steps in the *Quick Start Guide* to acquire a spectrum. This allows customers to acquire the first spectrum (acquire, process, plot, and save – all automatically).

Do this by preferably using the sealed "2-Ethyl Indanone" sample (provided with the system; part number 0190185503).

Overview of the VnmrJ 4 Interface

Give an overview of the layout of the VnmrJ 4 display, using the following list. Point out the location and simple use of:

- The Main Menu (for example, shows the location of File > Open, Edit > System Settings, and Tools > Probe Tuning)
- The Vertical Panels (show the Protocols, Frame, and Viewport tabs)
- The Graphics Window (this is where the spectral data always appears)
- The Graphics Toolbar (shows that it can be moved and docked elsewhere)
- The **Parameter panels** (shows how to navigate between the Start, Acquire, and Process tabs, and their various panels)
- The **Action Toolbar** (shows how to use the Show Time button on the Acquire tab, and the Transform button on the Process tab)
- The Hardware Toolbar (point out the following: Trash Can, Real-Time Monitors, Probe Selection, Acquisition Status, and Error-Message Display. (Optional) up-arrow acqstatus display)
- The **Command Line** (optional, show how to type pwd to print the working directory, or 1s to list files)

9 Customer Training

Basic (Automated) VnmrJ 4 Operation

Basic (Automated) VnmrJ 4 Operation

Give the customer more insight into the operation of VnmrJ 4 by doing the following:

- 1 Acquire data "In the Study Queue" by using the **Submit** button and the **StudyQ**.
 - **a** Acquire a queue composed of a ¹H 1D (PROTON), a ¹³C 1D (CARBON), APT, gCOSY, and gHSQCAD (typically on 2-ethylindanone in CDCl3).
 - **b** Fill out the **Start > Sample Info page** (specifically Sample Name, Solvent, Comment, tune, autolock, autoshim).
 - **c** Show the customer how to customize parameters for a node (within the StudyQ, prior to acquisition). Use the **Acquire > Acquisition** page to customize various parameters (that is, nt, d1, gain).

```
NOTE The data is saved automatically when using the StudyQ, using the filename templates within Edit / Preferences / Templates.
```

- d Acquire enough data to be sure to use the New Study, Submit, and Continue Study buttons.
- **2** Acquire data "Without the Study Queue" (in "manual mode") by using the **Acquire** button.
 - a Show the customer how to save data in this mode by using File > AutoSave.
- 3 Show the customer how to bring old data back into the StudyQ (File > Open).
- **4** Show the customer how to reprocess data in the StudyQ (for example, use the **Transform** button in the action bar of the **Process** tab)
- 5 Show the customer how to replot data in the StudyQ (use the **Process** > **Plot** page, **File** > **Print Screen**, or optionally the command line)
- 6 Customize the protocols by adding a new button:
 - a Clone a study (using Tools > Study Clones > Clone Current Study)

Review where the documentation for these tasks is located within the manuals.

Detailed (Manual) VnmrJ 4 Operation

Teach the end user detailed software operation by doing each of the following:

- 1 Demonstrate the use of the features in the Main Menu (such as, File > Open, Acquisition > Abort Acquisition, Tools > Probe tuning, and so forth).
- **2** Demonstrate the use of the icons in the System Toolbar (such as, **Cancel Command**, **Stop Acquisition**). Point out the "Floating Tool Tips" that tell you what the icon will do, even without pushing it, and the use of context-sensitive help.
- 3 Demonstrate use of File > Open and File > Save As pop-up windows to open and save data, respectively.

These windows can each be in different locations within the directory structure.

These windows only show the files determined by "Files of Type". They may not show all the files in each directory unless configured to do so with the "Files of Type" menu.

- 4 Demonstrate the Action bar buttons (that is, Acquire, Show Time, and Autoprocess).
- **5** Demonstrate use of the command line, and adjusting the size of the error window.
 - a Type pwd and ls, then show how the text output goes to the **Process** > Text window.
 - **b** Adjust the size of the error window and then hide the command line completely by dragging the window size.
- 6 (Optional) Teach the use of multiple experiments (cexp (3), jexp3, mf (2,3), and so forth).
- 7 (Optional) Teach the end user closing and pinning windows, and how to use the View menu to open closed windows. Demonstrate pinning and closing on the graphical tool bar, the parameter panels page, the hardware toolbar on the bottom, and a vertical panel. Show how to redisplay closed windows by using the View menu.
- 8 Show how to use the depth gauge (and the knurled locking knob).

9 Customer Training

Detailed (Manual) VnmrJ 4 Operation

- 9 Insert and Eject
 - **a** from the buttons on the panels.
 - **b** from the switch on the upper barrel.
 - **c** from the command line (by typing eject and insert, or e and i. This is optional.

NOTE You cannot eject with one method and then insert using another method. This may confuse the hardware.

10 Teach the end user "semi-manual" locking (push the Find z0 button).

Teach the end user manual locking (adjust Z0, lock power, and lock gain).

An ideal target lock level is 80%, so the lock gain should be adjusted to achieve this. Point out that users should generally note at which value they set the lock level (to ensure that it is normal for a given lock power, lock gain, and solvent, and to verify after time that the lock level did not decay too much during long-term acquisitions).

- **11** Teach the end user "semi-manual" shimming (by using the **Gradient Shimming** button on the **Start > Lock** page).
- **12** Teach the end user manual shimming (show use of the **Start > Shim** page).
- **13** Adjust lock phase (on the **Start > Lock** and **Start > Shim** pages) while monitoring the lock level.

(Explain that this should be done only when the system is well shimmed, and ideally on a standard sample that has a sharp lock -like the lineshape sample. The lock phase should be documented in the system logbook. The optimal lock phase value can change by 90 degree steps whenever the console is power cycled.)

14 Save shims:

- **a** To the local user account (the default, saves the shims in ~/vnmrsys/shims).
- **b** (Optional) To the system account (/vnmr/shims).

15 Load shims:

- a From the combination of the probe file and the preferences option.
- **b** From the Shim page (Note that this may require the use of a terminal window or the Locator to find the exact filename.)
- c By dragging and dropping from the Tools > Browser window.
- d (Optional) By dragging and dropping from the Tools > Locator window.
- e By using the Open button in the File > Open window (you need to select "shim" via the display menu to see the files).
- **16** Select a probe file, and learn how to determine if a given probe file is either a "System" or a "User" probe file. Learn how to determine if a given probe file is a "Probe ID" file or not. Show how ProbeID is turned on- and- off by using the configuration page and the check boxes in the probe pop-up window.
- **17** Show the customer how to review the contents of a probe file (that is, check the Edit box, review the tabs for different nuclei).
- **18** Show the customer how to set the Temperature (use the **Spin > Temp** page).
- 19 Show the customer how to set the spin rate (use the Spin > Temp page).

We suggest you also select (mark) the check box for "Control spinner from this panel only".

- 20 Tuning:
 - a If ProTune is installed, show how to manually use ProTune (by using Tools > Probe Tuning > Auto Tune Probe). Tune a nucleus.
 - **b** Show the customer how to use mtune to view (monitor) the quality of tuning (by using **Tools > Probe Tuning > Manually Tune Probe**).
 - **c** Using mtune, demonstrate tuning by using the knobs on the bottom of the probe if they are accessible (no ProTune), or by using the knobs on the ProTune box.
 - ${\bf d}$ (Optional) Show the customer how to tune using the Tune box on the tether.

[To do so, set the rf on channel 1 to H1 and channel 2 to C13, then adjust the controls on the tether box (channels = 1 or 2, gain = 8) and tune to the resulting display].

Detailed (Manual) VnmrJ 4 Operation

21 Show the customer how to use the graphical toolbar:

- a On a 1D spectrum, demonstrate expanding, contracting, integral on/off, threshold, and phasing.
 Ensure that every end user spends time learning how to phase manually. This is a difficult concept to master if you have never used it before, and it is impossible to teach over the phone, so we need at least one user at each site to have mastered how to phase manually. The next most confusing (but not difficult) task is integration. See the optional topic below.
- **b** On a 2D spectrum, demonstrate expanding, vertical-scale adjustment, panning, trace, and rotate.
- 22 (Optional) Teach setting up the integral.

For beginning users, this is easier to teach by using the **Process** > **Integration** page.

This task can also be done using the graphical toolbar.

- **23** Show the customer how to plot "manually" (when not using the StudyQ for automation):
 - **a** By using the buttons on the parameter panels.
 - **b** (Optional) By entering pl pscale page on the command line
- 24 (Optional) Show the customer how to setup gradient shimming and make a new map (that is, explain how to use Tools > Standard Calibration Experiments > Set up Gradient shimming). Detailed directions on how to do this are in the *Gradient Shimming* chapter of the *Spectroscopy Guide*. Contrast this with gradient shimming via the Lock > Gradient Shim button, which requires no user interaction.
- **25** (Optional) Show the customer how to setup arrays and then clear them (demonstrate a pw array).
- **26** (Optional) Show the customer how to use the Arrayed Spectra vertical panel to process and display arrayed data.
- 27 (Optional) Show the customer how to set up Quantification.

Linux Training

- **1** Provide the end user with written copies of the usernames and passwords for root, vnmr1, and any other user accounts, as were set up by the installer.
- 2 Show the customer how to login a user account.
- **3** Show the customer how to logout of a user account.

Let the users login to each account so they know each password works.

- 4 Show the customer how to start VnmrJ 4 (click on the icon on the desktop, or enter vnmrj in a terminal window)
- **5** Show how to exit VnmrJ 4 (File > Exit VnmrJ 4).

Explain that this should be done before a user logs out of the user account (if possible). Do this by using **File > Exit** in the Main menu, or entering "exit".

- **6** Show the customer how to start VnmrJ 4 Adm (which requires vnmr1 permission) (click on the icon on the desktop, or enter vnmrj adm in a terminal window)
- 7 Show the customer how to reboot the host computer:
 - a From the Linux menu
 - **b** (Optional) From a terminal window, enter su, enter the root password, enter reboot
- 8 Show the customer how to reboot the communication with the console: su acqproc, reset the master, su acqproc, load shims.

(Discuss that "resetting the master" is optional here.) (Run /vnmr/bin/makesuacqproc if needed.)

- **9** (Optional) Show the customer how to set up a printer in Linux.
- **10** (Optional) Show the customer how to read the manual pages in a terminal window (that is >man ls), or call up the Help documentation in Linux.
- **11** (Optional) Show the customer how to use >ps -ef, then >kill (>kill -3 pid). (This requires root permission.)
- **12** (Optional) Show the customer how to tar up (data) directories into a single tar file:

tar cvf filename.tar filename - this copies filename into filename.tar.

tar xvf filename.tar - this extracts the contents of filename.tar.
13 (Optional) Discuss how to obtain and load patches to VnmrJ 4.

VnmrJ 4 Administration

Provide training in VnmrJ 4 Administration:

- 1 Make a new user. (New User, [enter User Login and Interface Type], Save)
 - **a** Explain that there are three interface types: Spectroscopy, Imaging, LC-NMR/MS. Use Spectroscopy for liquids and solids NMR.
 - **b** Explain how making a new user may not allow that user to access existing local files in another user account [probe file, gshimlib, shapelib, and so forth].
- 2 (Optional) Make a new Operator in a User Account.
- 3 (Optional) Show the customer how to "Switch Operators" in VnmrJ 4.
- 4 (Optional) Show the customer how to set the default operator password.
- 5 Delete a user account by highlighting the username, right-click, delete.
- 6 Update a user account (Configure > Users > Update users).
- 7 Show the customer how to set up a Printer in VnmrJ 4.
- 8 (Optional) Show the customer how to use VnmrJ 4 Accounting.
- **9** (Optional, if installed) Show the customer how to turn Probe ID on- and- off, and use the probe popup in both modes.

9 Customer Training

VnmrJ 4 Administration - Quick Start

VnmrJ 4 Administration - Quick Start

Review all the topics in the Admin Quick Start chapter of the *VnmrJ* 4 Administration Guide.

- 1 Show the customer how to use **Edit > Preferences** (User Preferences).
- **2** Review the contents of every tab.
 - **a Templates tab:** Show the customer how to modify the automation directory and file-saving parameters.
 - **b Queue tab:** Show the customer how to modify the defaults for autolocking, autoshimming, and protune.
- **3** Show the customer how to use Edit > System Settings
 - **a** Show the customer how to turn on/off "automatic processing upon drag- and- drop".
 - **b** Show the customer how to turn on/off WYSIWYG. Explain what this does, and that it may influence how much of the graphics screen is used to display data.
 - **c** Show the customer how to turn on the PFG usage for each new user (which is the same as pfgon='nny').
- **4** Show the customer how to select a printer and plotter for each new VnmrJ 4 user (**File > Printers**).
- 5 Show the customer how to use Edit > System Settings > System Config pop-up window. (Explain that this is only accessible to the vnmr1 user.)
- 6 (Optional) Show the customer how to use "appdirs" (Edit > Applications; this is needed for Biopack, and so forth).
- 7 Show the customer how to change a password:
 - a In VnmrJ 4 (Tools > Change Password)
 - **b** (Optional) In VnmrJ_Adm
 - **c** (Optional) In Linux (>passwd username)
- 8 Explain how the Experiment Protocol buttons read the calibrations stored in the Probe File. (When you push the **Proton** button, you read in a proton parameter set, and update it to account for the values stored in the probe file. So if the probe file is not set properly, the calibrations – and hence the data – will not be proper). The probe file is now required for proper operation on VnmrJ 4

- 9 Show the customer how to do a probe-file calibration.
 - **a** Demonstrate it on an existing probe file (that is, using the Doped D2O sample). Also rerun the methyl iodide calibration if time allows.
 - **b** Explain that the "target values" in some of the calibrations come from the probe specification sheets (which may not be readily available to the end user when they want them).
 - **c** (Optional) Add and then remove a nucleus from the probe file by using the button on the probe popup.
- **10** (Optional) Show the customer how to change the probe file's default shimmap (Probelkmap in the probe file). Explain that this exact file is what is used during automated acquisition (even if another map is set in the gradient shimming parameter panels [gmapsys]).
- **11** (Optional) Show the customer how to start and stop the cold probe (if appropriate) using the Cryo vertical panel
- 12 Document the following into a logbook:
 - a The console serial number (Show the customer where it is)
 - **b** Write down lockfreq (in the System Configuration panel, see the section below)
 - **c** The air-flow and air-pressure values on both the pneumatics box and on "the wall" (at the regulator at the source of the gas to the room)
 - \mathbf{d} The current value of the lock phase
 - e The value that the depth gauge screw is set to

13 Save a copy of shims into /vnmr/shims

- **a** By using the command line (svs('/vnmr/shims/shimname'))
- b By using the VnmrJ 4 GUI on the Start > Lock page (type in the whole path name: /vnmr/shims/shimname)
- c By using the terminal window

14 Show the customer how to calibrate Protune.

9 Customer Training

Hardware Overview

Hardware Overview

- 1 Point out the console, the RF front end, the Pneumatics box, the probe (Optional: ProTune, the robotics, cold-probe units, pfg cable (which moves top-to-bottom sometimes), FTS, Remote Status Unit, Tune Box (on the tether, and so forth).
 - **a** Show the customer where the console serial number is located (inside the front door).
- 2 Review Edit > System Settings (as vnmr1) as needed to explain hardware options.
 - a Write down lockfreq.
 - b Take a screenshot of the config pop-up window and save it in vnmr1's home directory as a backup. (use the Linux menu Applications > Accessories > Take Screenshot).
- **3** Show the customer the customer where the extra probes (in their boxes) are located (if appropriate).
- **4** Show the customer how to place a red plastic cap on the probe when it is not in use, especially when it is in the probe case. Explain that this is important to keep debris out of the probe, especially static-prone particles of probe-case foam.
- **5** Show the customer how to power cycle the console after a power interruption.
 - a Point out and explain the use of the blue-green button on VNMRS.
 - **b** There are also power switches on the RF Front End unit, the Protune unit, the PFG amp, the console's power supplies, and so forth.
- **6** Show the customer where the "master reset button" is located in the console (again).
- 7 (Optional) Demonstrate probe installation and operation:
 - **a** Show the customer how to install the probe.
 - **b** Show the customer how to reposition the probe (that is, push the probe up, push the upper barrel down, tighten the clamp).
 - **c** Show the customer how the manually tune the probe, if automated probe tuning is not present.
- 8 The arrows on the directional couplers point away from the probe and towards the filters and console.
9 (Optional) Explain the meanings of the console lights and the lights on the pneumatic box.

10 (Optional) Explain how to use the FTS unit.

11 Train the customer on magnet safety and cryogen fill techniques:

- Warning signs posted
- Cryogenics handling and safety
- Magnet filling
- Flow meters and Cryogen meters
- Homogeneity disturbances

9 Customer Training

Customer Support Information

Customer Support Information

1 Provide the contact details to be used when help is needed.

Contact Center: 1-800-227-9770, option 3, option 7.

- **a** Show the customer where to find the console serial number (which will be needed when you call TAC).
- **b** Show the customer how to use Help > About VnmrJ to find the software version and patch level.
- 2 Show the customer the Agilent Web site (http://www.chem.agilent.com/en-us/ContactUS/Pages/ContactUs.aspx), especially the "User Pages".
 - **a** The user needs to register to use the "User Pages" (to get the username and password).
 - **b** (Optional) Register the user right now.
- **3** Show the customer how to get to the Agilent Web site for NMR help.
 - a Through a regular Web browser (www.chem.agilent.com > Instruments & Systems > Nuclear Magnetic Resonance).
 - **b** Through the online help within the VnmrJ 4 user interface, by selecting **Help > Spinsights Community Help Site**.

Lock Frequency (lockfreq)

Magnets lose a small amount of their current over time. The magnet "drift" means that the frequency needed to lock the deuterium signals will decrease slowly with time. This means that the Z0 value for any given solvent will slowly decrease with time. Eventually the system "lockfreq" will need to be reset to compensate. This needs to be done when the Z0 value runs out of range, making it impossible to establish lock. This will typically be observed first on CDCl3 and C6D6. When the drift happens, which may take six months to two years, contact Agilent service for detailed instructions on how you can "reset your lockfreq due to magnet drift".

Administrative Chores

- **1** Show the customer where the NMR data from installation is stored (for example, S/N, lineshape, and so forth).
- 2 Obtain sign-off on the installation.

VnmrJ 4.2 Familiarization Guide

10 Automated Data Collection and Spectra Interpretation

Automated Data Acquisition 222 Building a Study 224 Interpreting the Indanone Spectra 227

This chapter contains a basic walkthrough of collecting and analyzing NMR data using the automated tools in VnmrJ.

Automated Data Acquisition

Automated Data Acquisition

The automated data acquisition procedures outline several 1D and 2D experiments using the ethylindanone sample.

These experiments demonstrate the capabilities of the spectrometer, the correct calibration of the instrument, and validate the correct functioning of the instrument. If a sample changer is present, submit acquisitions to background.

The following is part of the training session. How to:

- Set up and use the VnmrJ interface
- Use the Experiment Panel to select the application type, Std1D, Hetero 2D, and Homo 2D experiments
- Set up 1D, 2D, gradient (if appropriate hardware is installed) and non gradient protocols. Click the experimental protocols for proton and carbon 1D, homonuclear 2D, and heteronuclear 2D experiments from the list of protocols.
- Create, run, save data, and plot the results obtained from the composite protocol

These experiments can be run using either the Account Owner or Operator interface.

Refer to the *Agilent VnmrJ Administration Guide* for instructions on setting the user interface (both the administrator and operator) and for working with the VnmrJ interface.

Sample for Automated Data Acquisition

Sample	Sample size	Part number		
2% 2-ethyl-1-indanone in chloroform- <i>d</i>	5 mm	01-901855-03		

Login to VnmrJ

- 1 Log in using the operating system VnmrJ Account Owner.
- 2 Select the account owner from the **Operator** menu, enter the password, and click **OK**.
- **3** Select Automation > Automation Run > New Automation Run.
- 4 Make sure that the printer/plotter is set up, pfgon is set properly, and shim map has been copied into /vnmr/shimmaps.

Setting up the study and lock solvent

- 1 Insert the indanone sample (01-901855-03).
- 2 Click New Study in the Study Queue.

Start Acc	quire Process	Insert <mark>Eject</mark>	Lock scan	Setup hardware	Auto lock	Auto tune	Gradient shim	Logout	¢
Sample Info Lock Shim Spin/Temp	Operator: vnmr1 Sample informa Sample name Sample directory Solvent Concentration Notebook Page	tion Clindamycin D20 DMSO CDCI3	Clea B D20 Other mM	r Email Comments Clindamycir er 400-MR wit	n phosphate 1 th OneNMR pr	0 mg in D20 obe			

Figure 71 The Sample info page

- 3 Click the Start tab, then in the Sample info page enter the Sample name: 2-ethyl-1-indanone
- 4 Select chloroform from the Solvent menu.
- **5** Confirm that the following items are selected:
 - Autoplot
 - Shim
- 6 Confirm that Lock? is set to Yes (alock <>n).

Do not click Email when study complete or Email when fid complete.

Building a Study

Building a Study

Protocols	Quic	kSubmit	Frame						
Experiment Select - Common - PROTON - CARBON - (H)PRESAT - (H)We11D - (HC)HSQCAD - (HC)GHMBCA - (HC)GHMBCA	or Tree		× ¤						
	-								
Study Queue	_	_	₽ ×						
Submit	queue	Cancel							
? New Sample									
SampleInfo [Da	y:1:47:00]								
PROTON_001_	day [0:24]								
CARBON_001_	day [8:45]								
gCOSY_001_da	y[3:12]								
HSQCAD_001_0	day [8:18]								
TOCSY 001 da	_uay[54.02]								
DEPT 001 day	(13·17)								
APT 001 day [13:311								
, , , , , , , , , , , , , , , , , , ,									
Add next se	ection to	• DayQ C	NightQ						
Naw st	udv	Priority s	ample						
Cuba	ait t	Automation	* 1						
Subn	III (1)	Automation							
	Edit study fr	om location							
Cle	ar pending e	Clear pending exp from queue							

Figure 72 Protocols tab showing Experiment Selector Tree and Study Queue

Common tab

In the Experiment Selector tree, select **Common**, Figure 72, and double-click the following experimental protocols in the following order:

- **1 PROTON**
- 2 CARBON
- 3 (HH)gCOSY
- 4 (HC)HSQCAD
- 5 (HC)gHMBCAD

Under Liquids, click (HH)Homo2D and select

6 TOCSY

then click Std1D, and select:

- 7 DEPT
- 8 APT

Customizing the parameters and starting data acquisition

Submit queue Cancel									
PNew Sample SampleInfo [Day:1:46:00] PROTON_001_day[0:24] CARBON_001_day[8:40]				Conta	Out and	Default		Annua	Common disaran
gCOSY_001_day [3:12] HSQCAD_001_day [8:18] gHMBCAD_001_day [3:02]	Start Acquire Default C13	e Process	BON Solvent:	cdcl3	Quit-nosave	Obse	ve: C13	Deco	upler: H1
TOCSY_001_day [17:32] DEPT_001_day [13:17] APT_001_day [13:31]	Acquisition Pulse Sequence Channels	Acquisition options				Receiver gain (dB) 30 Autogain			
Add part coloring to Part O Night O	Flags Future Actions Overview	(Number o	f scans 100	3 to 234.	3 ppm	B A	efore CAI fter CARE	RBON acq BON acq:	Re-shim
New study Priority sample Submit to		Pulse ang H1 decou Check S/b	e 45 pling Deci	equipled + NC	ees E 💌	S	ample na	me:	
Edit study from location Clear pending exp from queue						S M	tart of Q I pre option	lock/shim? ns: PlotProc	yes / yes Adv page
Temp Spin Lock Sample Pr 25.0 C 0 Hz 73.3 15 HCN5m	obe	Idle		D Ad	ding APT to que	ue			

Starting data acquisition using a study

The **Study Queue** contains the protocols in the order each one was selected and should look similar to the study queue shown in Figure 73.

- **1** Double-click on the CARBON protocol time to retrieve the parameters.
- 2 Click the Acquire tab.
- 3 Select the Defaults C13 page (if more than one page is available).
- 4 Select 1000 from the Number of Scans menu.

Starting data acquisition using a study

- 1 Select Background from the Study Queue-Submit to pulldown menu.
- 2 Click Submit.
 - All the protocols are locked automatically.
 - Acquisition starts.

Interpreting the Indanone Spectra

In this section, the data obtained from the automated probe calibration and 2% 2- ethyl- 1- indanone sample are interpreted.

- "Calibration When is it Necessary" on page 227
- "Interpretation of the Calibration Data" on page 227
- "Interpretation of 2-Ethyl-1-Indanone Spectra" on page 235

Calibration – When is it Necessary

The spectrometer must first be calibrated before acquiring spectra of a sample if:

- A new probe is installed.
- The original calibration used a sample in an organic solvent and the new sample has changed from an organic solvent to an aqueous solvent or aqueous solvent with a high salt concentration.
- The current probe calibrations have not been verified recently.

Interpretation of the Calibration Data

The first of the spectra, shown in Figure 74, is a ¹H observe with $CDCl_3$ as the lock solvent. This data is saved as H1ref. This spectrum contains three ¹³CH₃I resonances centered at about 2.2 ppm. The center resonance is from the protons attached to carbon-12 and the two outer resonances are from the protons attached to ¹³C. The other resonances in the sample are from trimethylphosphite that has reacted with the methyl iodide.

Interpretation of the Calibration Data

Figure 74 ¹H Sprectrum of ¹³C-Methyl lodide

All trimethylphosphite has reacted to form a phosponate ester $(CH_3)P(=O)(OCH_3)_2$. This phosponate ester has a doublet at about 1.5 ppm, methyl group attached directly to ³¹P and a triplet of doublets centered around 4 ppm that arise from ¹³C (outer pair of doublets) and 12C inner doublet of the methyl ester. The analysis of this sample is fully discussed in an article by Paul Keifer in *Magnetic Moments* (Keifer, P.A., *Magnetic Moments*, **1996**, 8 (#2), 18–20). The reaction results in a sample is partially enriched to give approximately 60% abundance of ¹³C in methyl iodide. The natural abundance of ¹³C is 1.1% so this level of enrichment is more then adequate for the purposes of calibration.

The spectrum, shown in Figure 75, is an array of increasing ¹H pulse widths based on the ¹H pulse you specified in the Acquire window. If you did not enter a value for the pulse width it is set to the default targets pw90 is set to 15 is and tpwr of 51.

The observe transmitter power is set to the value you specified and reduce by 3 for the first test. If the resulting pw90 is shorter then the value you specified (or the default, if you did not specify a pw90 target) the next test is started. If the pw90 is longer then the target, the observe power is increased. Two attempts are made. If the calibration fails to achieve a pw90 that is less than the specified pw90 the AutoCalibration exits. If either attempt yields a pw90 that is less then the specified value the AutoCalibration routine adjusts the observe power the remaining tests are aborted. If the pw90 is less then the specified value, the AutoCalibration then adjusts the power until the measured pw90 is no greater then the specified value but not more then 0.5 μ s less than this value.The spectra from a successful calibration are saved as H1pw90.

Figure 75 ¹H pw Array

The carbon pwx90 calibration is the next experiment. The pulse sequence changes from s2pul to PWXCAL. The specification for the carbon pw90 and tpwr are used as the target values. If no values were specified, the default values of 15 µs at power, in this case pwx1v1, of 51 are used as the target values. Just as with the proton pw90 calibration, the AutoCalibration makes two attempts to achieve the specification and exits

Interpretation of the Calibration Data

the AutoCalibration if the target specification is not reached after the second attempt. The data from the PWXCAL are saved as C13pwx and shown in Figure 76.

Figure 76 ¹³C pwx Array

Interpretation of the Calibration Data

Gradient profile Figure 77

The next two experiments are run only if you have gradients. The first experiment calibrates the Z-gradient strength, produces the profile shown in Figure 77, and stores this information in the parameter gcal.

The next experiment calculates the ratios of the gradients to be used in various ${}^{1}\mathrm{H}\{ ^{\hat{1}3}\mathrm{C}\}$ indirect detection experiments and stores this information in the parameter Cgrad (for only ^{13}C), Figure 78.

Interpretation of the Calibration Data

Figure 78 Gradient calibrations

The next calibration is carbon observe pulse width and the pulse sequence is changed to s2pul for direct observation of the carbon. The calibration will follow the same pattern as the calibration of the proton pw90 and the carbon pwx90 using default values for target values if no target specification is given. A reference carbon spectrum is obtained first. The full reference spectrum contains three sets of resonances, at the far right (approximately -22 ppm) is the ¹³C resonance from methyl iodide, the doublet at 10 ppm is from the ¹³C resonance from the phosponate methylester, and the 1:1:1 triplet (far left) at 78 ppm is the ¹³C resonance of chloroform-d, ²HCCl₃. The carbon pw90 calibration is analogous to the proton calibration. The reference carbon spectrum, shown in Figure 79, is saved as C13ref.

Figure 79 Proton coupled 13C spectrum of 13C-Methyl lodide

The carbon observe pw90 is determined using a pw array, see Figure 80, and saved as C13pw90.

The final calibration is of the proton decoupler. The first calibration step determines the value of γH_2 at a decoupler power of 40 (the default value).

This measurement is made using continuous wave, cw, decoupling. The pulse sequence is the same as in the previous experiment, carbon observe with proton decoupling, except pw is now set to a fixed value, decoupler modulation mode; dmm is set to 'c', decoupler mode dm; is set to 'yyy', and the decoupler offset; dof is arrayed to produce the spectra shown in Figure 16.

Interpretation of the Calibration Data

Figure 80 13C Observe pw array of proton coupled spectra3

Figure 81 Proton decoupler dof array

The first estimate of the proton decouple pw90 is made from these spectra. Using the relationship between the pulse width and the decoupler field strength, γ H2, shown in the equation below, the decoupler pw90 is determined.

$$\gamma H2 = \frac{1}{4(\rho w 90)}$$
 $\rho w 90 = \frac{1}{4(\gamma H2)}$

The sequence is now set to ppcal and the proton decoupler 90° pulse, pp, is determined. These spectra, shown in Figure 82 are saved as Hdec_dept.

Figure 82 Calibration of the decoupler 90° pulse width

These parameters and calibrations are used to setup WALTZ decoupling. This completes the calibrations. During the calibration procedure, spectra and the array values are plotted to provide a permanent record of the calibrations.

Interpretation of 2-Ethyl-1-Indanone Spectra

The proton NMR shows several distinct features. First, there are some impurities in the sample. These impurities, shown in Figure 83, are at the 2% level and some crosspeaks will show up in the 2D. The very large triplet for the methyl group has ¹³C satellites at J=125 Hz. The singlet at 7.24 ppm is the residual CHCl₃ in the CDCl₃ solvent.

Interpretation of 2-Ethyl-1-Indanone Spectra

Figure 83 Proton spectrum of 2-Ethyl-1-Indanone

The protons are assigned in the two expansions. The assignments are based upon the 2D data for the compound. The protons of the two CH_2 groups in the molecule, shown in Figure 84, are magnetically nonequivalent and show up as individual multiplets. The signals at 1.9 ppm and 1.55 ppm belong to protons on carbon 10. The two double doublets at 2.8 ppm and 3.26 ppm belong to protons on carbon 3. A complex multiplet at 2.6 ppm is the single proton on carbon 2.

The protons of the aromatic ring, shown in Figure 85, are assigned based on the gHMBC and gCOSY data. Some minor impurities can be seen as well as the residual $CHCl_3$ signal.

If the sample is shimmed very well there may be some truncation artifact on the $CHCl_3$ signal.

The gradient COSY shows cross peaks describing the coupling pathways. Some smaller cross peaks are also present in the spectrum which actually arise from the impurities shown in Figure 86. An example of this is the cross peak at 3.5 ppm.

Interpretation of 2-Ethyl-1-Indanone Spectra

Figure 84 Aliphatic region of the 2-Ethyl-1-Indanone spectrum

Figure 85 Aromatic region of the 2-Ethyl-1-Indanone spectrum

Interpretation of 2-Ethyl-1-Indanone Spectra

Figure 86 Gradient COSY of 2-Ethyl-1-Indanone

The methyl triplet in Figure 87 shows cross peaks to the H10 protons. The H10 and H2 protons cross peaks multiplicity shows them to be weakly coupled (the J value is small).

Interpretation of 2-Ethyl-1-Indanone Spectra

Figure 87 Gradient COSY (gCOSY) of aliphatic region of 2-Ethyl-1-Indanone

Assignment of the aliphatic region, begins with H7, the most deshielded proton, Figure 88. From H7 direct connectivity is apparent to H6. The rest of the assignment is H6 to H5 (the other triplet) and then to H4. The assignment of H7 to the signal at 7.72 ppm is confirmed by the gHMBC data.

Interpretation of 2-Ethyl-1-Indanone Spectra

Figure 88 Gradient COSY (gCOSY) of the aromatic region of 2-Ethyl-1-Indanone

TOCSY is a phase sensitive experiment. The cross peaks are narrower than in the COSY giving higher "resolution". Correlations among all protons in a spin system are observed in the TOCSY spectrum, see Figure 89. The critical parameter is mix. In this case mix is 0.08 seconds which is sufficient to show correlations throughout the entire spin system. Shorter mix times will reveal fewer correlations.

Interpretation of 2-Ethyl-1-Indanone Spectra

Figure 89 TOCSY of 2-Ethyl-1-Indanone shows correlations among all protons

The expansion shows the completely defined spin system starting with the CH_3 group and ending with protons on C10, Figure 90. A total of 5 crosspeaks are seen in the row.

Interpretation of 2-Ethyl-1-Indanone Spectra

Figure 90 TOCSY of 2-Ethyl-1-Indanone shows correlations among all protons

The indanone sample does not have any significant NOE crosspeaks, Figure 91

Interpretation of 2-Ethyl-1-Indanone Spectra

Figure 91 NOESY spectrum of 2-Ethyl-1-Indanone

The main area of interest in this spectrum is to note that the diagonal will be negative and the NOESY crosspeaks will be positive. Crosspeaks which appear to have both positive and negative components are actually not NOE correlations but coupling artifacts.

In the gHSQC (and HSQC) experiment, see Figure 92 the protons correlate with the carbons to which they are attached. The detected nucleus is ¹H and this results in a higher signal-to-noise then the ¹³C detected hetcor experiment. When compared to the HMQC experiment, the HSQC experiment has the advantage that the ¹H – ¹H homonuclear coupling do not evolve. As a result the resolution in the 2D plane is higher in the HSQC experiment. The higher resolution has the added advantage of improving the signal-to-noise. The version of the HSQC experiment supplied with NMR spectrometer systems has the added benefit that it will distinguish –CH, –CH₂, and –CH₃ groups. In this case phase is indicated by whether the crosspeak is filled in with multiple contours (above the plane) or is a single contour (below the plane).

Interpretation of 2-Ethyl-1-Indanone Spectra

By contrast to the gHSQC experiment, the gHMBC (and HMBC) experiment shows long range (mostly 2 and 3 bond) 1 H – 13 C correlations. This shows connectivity between the non - protonated carbonyl and the protons on C-2.

Figure 92 HSQC spectrum of 2-Ethyl-1-Indanone

Automated Data Collection and Spectra Interpretation 10 Interpretation of 2-Ethyl-1-Indanone Spectra

http://spinsights.chem.agilent.com

© Agilent Technologies, Inc. 2014

Revision A, May 2014

G7446-90569

Agilent VnmrJ 4

Experiment Guide

Notices

© Agilent Technologies, Inc. 2013

No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Agilent Technologies, Inc. as governed by United States and international copyright laws.

Manual Part Number

G7446-90515

Edition

Revision A, March 2013

This guide is valid for 4.0 and later revisions of the Agilent VnmrJ software, until superseded.

Agilent Technologies, Inc. 5301 Stevens Creek Blvd. Santa Clara, CA 95051

Warranty

The material contained in this document is provided "as is," and is subject to being changed, without notice, in future editions. Further, to the maximum extent permitted by applicable law, Agilent disclaims all warranties, either express or implied, with regard to this manual and any information contained herein, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. Agilent shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein. Should Agilent and the user have a separate written agreement with warranty terms covering the material in this document that conflict with these terms, the warranty terms in the separate agreement shall control.

Technology Licenses

The hardware and/or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license.

Restricted Rights Legend

U.S. Government Restricted Rights. Software and technical data rights granted to the federal government include only those rights customarily provided to end user customers. Agilent provides this customary commercial license in Software and technical data pursuant to FAR 12.211 (Technical Data) and 12.212 (Computer Software) and, for the Department of Defense, DFARS 252.227-7015 (Technical Data - Commercial Items) and DFARS 227.7202-3 (Rights in Commercial Computer Software or Computer Software Documentation).

Safety Notices

CAUTION

A **CAUTION** notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a **CAUTION** notice until the indicated conditions are fully understood and met.

WARNING

A WARNING notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met.

In This Guide...

This guide provides more information about the small-molecule liquids experiments available in the Agilent VnmrJ 4 Experiment Selector.

Contents

1	Introduction to Experiments 19	
	Organization 20	
	Modular Experiment Setup 22	
2	Standard 1D - Std 1D 25	
	STD 1D Tab 26	
	PROTON 28	
	General description and usage	28
	Key parameters 29	
	Processing 30	
	TIPS, LITCKS, and Text steps 50	
	CARBON 32	00
	General description and usage	32
	Processing 34	
	Tips, tricks, and next steps 34	
	FLUORINE 36	
	General description and usage	36
	Key parameters 37	
	Processing 38	
	Tips, tricks, and next steps 38	
	PHOSPHORUS 40	
	General description and usage	40
	Key parameters 41	
	Processing 42	
	(H)PKESAI 44	A A
	General description and usage	44

Contents

Key parameters 45 Processing 46 Tips, tricks, and next steps 46 (H)wet1D 50 General description and usage 50 Key parameters 51 52 Processing Tips, tricks, and next steps 52 T1 MEASURE 56 General description and usage 56 Key parameters 57 Processing 58 Tips, tricks, and next steps 58 T2 MEASURE 60 General description and usage 60 Key parameters 61 Processing 62 Tips, tricks, and next steps 62 (C)APT 64 General description and usage 64 Key parameters 65 66 Processing Tips, tricks, and next steps 66 (C)DEPT 68 General description and usage 68 Key parameters 69 Processing 70 Tips, tricks, and next steps 70 PureShift 1D 72 General description and usage 72
Key parameters 73 Processing 74 Tips, tricks, and next steps 74 (H)HomoDec 76 General description and usage 76 Key parameters 77 Processing 78 Tips, tricks, and next steps 78 CARBONecho 80 General description and usage 80 Key parameters 81 Processing 82 Tips, tricks, and next steps 82 BilevelDec 84 General description and usage 84 Key parameters 85 Processing 86 Tips, tricks, and next steps 86 Homonuclear 2D - (HH)Homo2D 89 (HH)Homo2D Tab 90 gCOSY 92 General description and usage 92 Key parameters 93 Processing 94 Tips, tricks, and next steps 94 COSY 96 General description and usage 96 Key parameters 97 Processing 98 Tips, tricks, and next steps 98

gDQCOSY General description and usage 100 Key parameters 101 Processing 102 Tips, tricks, and next steps 102 DQCOSY 104 General description and usage 104 Key parameters 105 Processing 106 Tips, tricks, and next steps 106 TOCSY 108 General description and usage 108 Key parameters 109 Processing 110 Tips, tricks, and next steps 110 zTOCSY 112 General description and usage 112 Key parameters 113 Processing 114 Tips, tricks, and next steps 114 ROESY 116 General description and usage 116 Key parameters 117 Processing 118 Tips, tricks, and next steps 118 ROESYAD 120 General description and usage 120 Key parameters 121 Processing 122 Tips, tricks, and next steps 122

NOESY 124 General description and usage 124 125 Key parameters Processing 126 Tips, tricks, and next steps 126 zCOSY 128 General description and usage 128 Key parameters 129 Processing 130 Tips, tricks, and next steps 130 Heteronuclear 2D 1-bond - J1(CH)corr 133 J1(CH)corr Tab 134 HSQCAD 136 General description and usage 136 Key parameters 137 Processing 138 Tips, tricks, and next steps 138 gHSQCAD 140 General description and usage 140 Key parameters 141 Processing 142 Tips, tricks, and next steps 142 HSQC 146 General description and usage 146 Key parameters 147 Processing 148 Tips, tricks, and next steps 148 qHSQC 150 General description and usage 150 151 Key parameters

Processing 152 Tips, tricks, and next steps 152 154 HMOC General description and usage 154 Key parameters 155 Processing 156 Tips, tricks, and next steps 156 qHMQC 158 General description and usage 158 Key parameters 159 Processing 160 Tips, tricks, and next steps 160 HETCOR 162 General description and usage 162 Key parameters 163 164 Processing Tips, tricks, and next steps 164 gHETCOR 166 General description and usage 166 Key parameters 167 Processing 168 Tips, tricks, and next steps 168 ASAPHMQC 170 General description and usage 170 Key parameters 171 Processing 172 Tips, tricks, and next steps 172 5 Heteronuclear 2D multiple-bond - Jn(CH)corr 175 Jn(CH)corr Tab 176

gHMBCAD 178 General description and usage 178 Key parameters 179 Processing 180 Tips, tricks, and next steps 180 182 gHMBC General description and usage 182 Key parameters 183 Processing 184 Tips, tricks, and next steps 184 gH2BCAD 186 General description and usage 186 Key parameters 187 188 Processing Tips, tricks, and next steps 188 gH2BC 190 General description and usage 190 Key parameters 191 Processing 192 Tips, tricks, and next steps 192 CIGAR 194 General description and usage 194 195 Key parameters 196 Processing Tips, tricks, and next steps 196 CIGARAD 198 General description and usage 198 199 Key parameters Processing 200 Tips, tricks, and next steps 200

6

HMBC 202 General description and usage 202 203 Key parameters Processing 204 Tips, tricks, and next steps 204 206 gHMBCmeAD General description and usage 206 Key parameters 207 Processing 208 Tips, tricks, and next steps 208 gHMBCRELAY 212 General description and usage 212 Key parameters 213 Processing 214 Tips, tricks, and next steps 214 Selective 1D - (H)Sel1D 217 (H)Sel1D Tab 218 NOESY1D 220 General description and usage 220 Key parameters 221 Processing 222 Tips, tricks, and next steps 222 ROESY1D 226 General description and usage 226 Key parameters 227 Processing 228 Tips, tricks, and next steps 228 TOCSY1D 232 General description and usage 232 233 Key parameters

Processing 234 Tips, tricks, and next steps 234 zTOCSY1D 236 General description and usage 236 Key parameters 237 Processing 238 Tips, tricks, and next steps 238 selexcit 240 General description and usage 240 Key parameters 241 Processing 241 Tips, tricks, and next steps 242 stepNOESY1D 244 General description and usage 244 Key parameters 245 246 Processing Tips, tricks, and next steps 246 **Selective 2D - Sel2D** 249 Sel2D Tab 250 (HC)bsHSQCAD 252 General description and usage 252 253 Key parameters Processing 254 Tips, tricks, and next steps 254 (HC)bsgHSQCAD 256 General description and usage 256 257 Key parameters Processing 258 Tips, tricks, and next steps 258

(HC)bsgHMBC 260 General description and usage 260 261 Key parameters 262 Processing Tips, tricks, and next steps 262 (HC)EXSIDE 264 General description and usage 264 Key parameters 265 Processing 266 Tips, tricks, and next steps 266 (HC)bsHSQCNOESY 268 General description and usage 268 Key parameters 269 270 Processing 270 Tips, tricks, and next steps (HC)bsHSQCROESY 274 General description and usage 274 Key parameters 275 276 Processing Tips, tricks, and next steps 276 (HH)bsROESY 280 General description and usage 280 281 Key parameters 282 Processing Tips, tricks, and next steps 282 (HH)bsTOCSY 284 General description and usage 284 Key parameters 285 Processing 286 Tips, tricks, and next steps 286

(HH)bsNOESY 288 General description and usage 288 289 Key parameters 290 Processing Tips, tricks, and next steps 290 Heteronuclear CRISIS2- (HC)Crisis2 293 (HC)Crisis2 Tab 294 c2hsqcse 296 General description and usage 296 Key parameters 297 Processing 298 Tips, tricks, and next steps 298 300 c2hsqc General description and usage 300 Key parameters 301 Processing 302 Tips, tricks, and next steps 302 gc2h2bcme 304 General description and usage 304 Key parameters 305 Processing 306 Tips, tricks, and next steps 306 qc2h2bc 308 General description and usage 308 Key parameters 309 Processing 310 Tips, tricks, and next steps 310 gc2hmbcme 312 General description and usage 312 Key parameters 313

Processing 314 Tips, tricks, and next steps 315 318 gc2hmbc General description and usage 318 Key parameters 319 Processing 320 Tips, tricks, and next steps 320 gc2hsqcse 322 General description and usage 322 Key parameters 323 Processing 324 Tips, tricks, and next steps 324 gc2hsqc 326 General description and usage 326 Key parameters 327 328 Processing Tips, tricks, and next steps 328 Hetero-TOCSY - (HC)HetToxys 331 (HC)HetToxys Tab 332 HSQCADTOXY 334 General description and usage 334 335 Key parameters Processing 336 Tips, tricks, and next steps 336 gHSQCADTOXY 340 General description and usage 340 Key parameters 341 Processing 342 Tips, tricks, and next steps 342

HSQCTOXY 346 General description and usage 346 Key parameters 347 Processing 348 Tips, tricks, and next steps 348 352 gHSQCTOXY General description and usage 352 Key parameters 353 Processing 354 Tips, tricks, and next steps 354 HMQCTOXY 358 General description and usage 358 Key parameters 359 360 Processing Tips, tricks, and next steps 360 gHMQCTOXY 364 General description and usage 364 Key parameters 365 Processing 366 Tips, tricks, and next steps 366 Carbon-carbon correlation - (CC)corr 369 (CC)corr Tab 370 **INADEQUATE** 372 General description and usage 372 Key parameters 373 Processing 374 Tips, tricks, and next steps 374 **INADEQUATEAD** 376 General description and usage 376 Key parameters 377

11

Processing 378 Tips, tricks, and next steps 378 380 ADEQUATEAD General description and usage 380 Key parameters 381 382 Processing Tips, tricks, and next steps 382 **Proton-fluorine - HF_Expts** 385 HF Expts Tab 386 388 FH gHETCOR General description and usage 388 Key parameters 389 390 Processing Tips, tricks, and next steps 390 FH HOESY 392 General description and usage 392 Key parameters 393 Processing 394 Tips, tricks, and next steps 394 FObs_HDec 396 General description and usage 396 397 Key parameters Processing 398 Tips, tricks, and next steps 398 HObs FDec 400 General description and usage 400 Key parameters 401 Processing 402 Tips, tricks, and next steps 402

12 **JSpectra** 405 406 JSpectra Tab HETER02DJ 408 General description and usage 408 Key parameters 409 Processing 410 Tips, tricks, and next steps 410 HOM02DJ 412 General description and usage 412 Key parameters 413 Processing 414 Tips, tricks, and next steps 414 13 Hadamard Encoded - Hadamard 417 Hadamard Tab 418 dqcosyHT 420 General description and usage 420 Key parameters 421 422 Processing Tips, tricks, and next steps 422 gcosyHT 424 General description and usage 424 Key parameters 425 Processing 426 Tips, tricks, and next steps 426 hetcorHT 428 General description and usage 428 Key parameters 429 Processing 430 Tips, tricks, and next steps 430

hmbcHT 432 General description and usage 432 433 Key parameters Processing 434 Tips, tricks, and next steps 434 436 hsqcHT General description and usage 436 Key parameters 437 Processing 438 Tips, tricks, and next steps 438 hsqctocsyHT 440 General description and usage 440 Key parameters 441 Processing 442 Tips, tricks, and next steps 442 noesyHT 444 General description and usage 444 Key parameters 445 Processing 446 Tips, tricks, and next steps 446 450 roesyHT General description and usage 450 451 Key parameters 452 Processing Tips, tricks, and next steps 452 tocsyHT 454 General description and usage 454 Key parameters 455 Processing 456 Tips, tricks, and next steps 456

Index 459

Agilent VnmrJ 4 Experiment Guide

Introduction to Experiments

Organization 20 Modular Experiment Setup 22

This guide was created for the benefit of organic chemist/novice NMR spectroscopists to intermediate level NMR spectroscopists.

The purpose of this document is to provide more information about the small-molecule liquids experiments available in the VnmrJ 4 Experiment Selector. Included are descriptions of the experiments, their utility, guides to parameter selection, processing, and references for further reading.

1 Introduction to Experiments Organization

Organization

The chapters of this manual are divided into the headings listed on the tabs of the Experiment Selector found in the middle of the left side of the VnmrJ window:

Experiment Selector 📮 🗙				
HF_EXpts (HC)Crisis2 Hadamard Jn(CH)corr (H)Sel1D (HC)HetToxys Sel2D Service (HH)Homo2D JSpectra J1(CH)corr Common Std 1D (CC)corr System Studies				
PROTON	CARBON			
FLUORINE	PHOSPHORUS			
(H)PRESAT	(H)wet1D			
	12_MEASURE			
(C)APT	(C)DFPT			
PureShift 1D	(II)I IomoDec			
CARBONEcho	BilevelDec			

The DOSY2D and DOSY3D experiments are installed with the Dosy package for VnmrJ. If this package was purchased and/or installed, these tabs do appear . A separate DOSY manual is available under the "Help > Online Manuals" menu.

The "Common" tab is a redundant listing of popular routine experiments; similarly, the "System Studies" serve as demonstrations of experiments combined into a single study. Because these experiments are covered under other tabs, these tabs have not been included. Finally, the "Service" tab is intended for the use of system service personnel, not the users of this manual, and was omitted.

The chapters begin with a general description of the family of experiments and some of the key variants among the experiments. Each experiment in the family is then discussed separately and in depth. The individual experiment descriptions contain a general overview, examples of usage, a pulse sequence diagram, guidance for parameters selection and processing, and literature references. A screenshot of the "Default" panel of the "Acquire" tab, which contains the most pertinent parameters, is shown for each experiment. Pictures of spectra from the experiments are not shown; however, example data sets for most experiments are located in the /vnmr/fidlib folder on your spectrometer. 1 Introduction to Experiments Modular Experiment Setup

Modular Experiment Setup

All the sequences in the Experiment Selector were built with a modular design to facilitate parameter setup. By using a "layering" approach where each experiment contributes some property to the final combination, it is possible to configure hundreds of variations without the need for hundreds of individual entries. Each experiment has a customized "Default" panel under the "Acquire" tab that contains the most important and commonly modified parameters for that experiment. Additional panels are added under the "Acquire" tab for more detailed parameters when necessary. When new experiments are created from existing ones, relevant parameters such as the spectral width are retained in a logical fashion.

To illustrate the modular concept, consider a progression of experiments starting with a PROTON and ending with an HSQCADTOXY. A PROTON experiment was acquired with a customized spectral width (sw). If an HSQC experiment is selected from the proton, this sw is maintained in the F2 dimension of the HSQC, as well as other acquisition dominant parameters such as the 90° pulse width (pw90). Set parameters related to the F1 dimension, for example, number of increments (ni) or the ${}^{13}C$ spectral width. If you decide to acquire an HSQCAD instead, these new F1 parameters are transfered to the HSQCAD and you do not need to reset them. The necessary adiabatic shaped pulses are calculated automatically from parameters in the probe file. Then, to acquire an HSQCADTOXY from the HSQCAD experiment, set only the parameters relating to the TOCSY spinlock (for example, the mixing time). In contrast, if a TOCSY experiment is set up before the HSQCADTOXY, the parameters related to the TOCSY are transferred, and you must set up the HSQC-related parameters instead.

Solvent suppression is also much easier with this modular experiment design. Solvent suppression ("wet", "presat", or "purge" type) is available for nearly all the experiments in the selector. Separate experiments such as "presat COSY" or "wet TOCSY" are not necessary, which greatly simplifies the experiment choices. The desired type of solvent suppression is set by choosing the appropriate (H)PRESAT or (H)wet1D experiment and parameters (PURGE suppression is part of (H)PRESAT). Any experiment that is selected later automatically contains the same solvent suppression setup.

The focus of this manual is using the "Experiment Selector" buttons and the "Acquire" tab parameter panels to set up experiments. However, the "Experiments" pull-down menu at the top of the VnmrJ window contains some useful functionality for setting up experiments with nuclei other than the typical ¹H and/or ¹³C. Briefly, selecting experiments under the "Convert Current Parameters To Do" heading retains the currently set transmitter nucleus (tn) and decoupler nucleus (dn). If the HSQCAD experiment is chosen with tn='F19'/dn='P31', the resulting parameters are for a ¹⁹F-³¹P HSQCAD experiment. Similarly, if the PRESAT experiment is chosen with tn='F19' or 'P31', the result is a 1D ¹⁹F or ³¹P experiment with presaturation at a selected frequency. This menu allows for easy setup of experiments with "nonstandard" nuclei.

For all the pulse sequences, necessary shaped pulses are calculated automatically from a combination of parameters in the appropriate module and the probe file. Therefore, a probe file containing the relevant calibration information for the experiments is required. See the VnmrJ Installation and Administration manual, Chapter 9, for information on how to set up a probe file.

1 Introduction to Experiments

Modular Experiment Setup

Agilent VnmrJ 4 Experiment Guide

2 Standard 1D - Std 1D

 STD 1D Tab
 26

 PROTON
 28

 CARBON
 32

 FLUORINE
 36

 PHOSPHORUS
 40

 (H)PRESAT
 44

 (H)wet1D
 50

 T1_MEASURE
 56

 T2_MEASURE
 60

 (C)APT
 64

 (C)DEPT
 68

 PureShift 1D
 72

 (H)HomoDec
 76

 CARBONecho
 80

 BilevelDec
 84

2 Standard 1D - Std 1D STD 1D Tab

STD 1D Tab

This tab of the Experiment Selector includes the set of standard 1D experiments available, including experiments for proton and other nuclei. The experiments commonly used for proton detection include the standard PROTON 1D experiment, experiments with both presaturation and wet-type solvent suppression, T_1 and T_2 relaxation measurements, plus homonuclear and bilevel decoupling experiments as well as an experiment that produces the equivalent of a broad-band decoupled proton spectrum, called Pureshift 1D. Carbon-detected experiments included are the basic CARBON, (C)APT and (C)DEPT multiplicity selection, and a CARBONecho experiment. Finally, there are tabs for ¹⁹F (FLUORINE) and ³¹P (PHOSPHORUS) 1D experiments, which are also easily adapted for other X-nuclei.

Experiment Selector 🛛 📮 🗙				
HF_Expts (HC)Crisis2	Hadamard			
Sel2D Dosy 2	D Dosy 3D			
Jn(CH)corr (H)Sel1	LD (HC)HetToxys			
Service (HH)Homo2D	JSpectra J1(CH)corr			
Common Std 1D ((C)corr System Studies			
PROTON	CARBON			
FLUORINE	PHOSPHORUS			
(H)PRESAT	(H)wet1D			
T1_MEASURE	T2_MEASURE			
(C)APT	(C)DEPT			
PureShift 1D	(H)HomoDec			
CARBONecho	BilevelDec			

PROTON

General description and usage

Description:

Uses the standard s2pul pulse sequence to acquire a 1D-¹H dataset.

Usage:

Just as the PROTON experiment is the first step in a typical small molecule structure elucidation, it is also the basic building block for most of the common liquids NMR experiments. When acquiring under automation, most of the 2D experiments require acquisition of a 1D proton first, and it is helpful to begin with this experiment when acquiring manually as well. Important parameters such as solvent and spectral width are transferred to further experiments set up from the proton dataset. All parameters are set from the "Acquire" tab/"Default H1" panel unless otherwise specified.

Key parameters

Parameter	Description		
Solvent (solvent)	Set from "Start" tab/"Standard" panel		
Spectral Width (sw)	Select typical choices from pull down menu or type in specific ppm values		
Number of scans (nt)	Select typical choices from pull down menu*		
Relaxation Delay (d1)	Select typical choices from pull down menu*-controls the delay between scans		
Pulse Angle	Select typical choices from pull down menu*-controls the tip angle for the pulse		
Acquisition time (at)	Set from "Pulse Sequence" panel, controls the digital resolution (Hz/point, 1/at)		

NOTE

You can type specific values for these parameters manually in the appropriate boxes on the "Acquisition" panel.

Default H1 Acquisition	Experiment: PROTON Solvent: d2o	Observe: H1 Decoupler: C13
Pulse Sequence Channels Flags Future Actions Overview	Acquisition Options Spectral Width (select): (or enter): -2.0 to 14.0 ppm Number of scans 1 Relaxation Delay 2 s Pulse Angle 90 degrees	Receiver Gain (dB) 10

2 Standard 1D - Std 1D Processing

Processing

A typical processing weighting (apodization) choice that provides S/N enhancement (at the expense of resolution) for a 1D proton spectrum is line broadening, with an lb setting from ~0.5 - 1 Hz. A suggested optimal value is an lb equal to the unfiltered peak linewidth at half-height. Other types of weighting functions are available under the "Process" tab on the "Weighting" panel. Suggested choices for resolution enhancement (at the expense of S/N) are "pseudo echo" and "res-enhance." When the weighting function is selected, values for these parameters are calculated based on the acquisition time. They can also be set manually with the "Interactive Weighting" button.

NOTE

Resolution enhancing functions affect the spectral integration- do not use these types of apodization for quantification.

Tips, tricks, and next steps

- The appropriate receiver gain (gain) is most easily set by making sure that the Autogain option is checked on the right side of the "Acquire" tab. The software optimizes the gain setting before data collection.
- To optimize the spectral width (sw) further, place one cursor on each side of the desired region on the spectrum, click the **MOVESN** button located under the spectrum window and reacquire the data.
- To estimate the 90° pulse automatically for subsequent experiments, click the subsequent experiments button located underneath the spectrum window. This calibration is used in lieu of the value in the probe file for future experiments on this sample. Calibration is useful with either salty samples or where perfect tuning is not achievable, both of which can cause longer 90° pulse values.
- The acquisition time (at) which controls the digital resolution (Hz/point, which is equal to 1/at), is set on the "Acquisition" panel of the "Acquire" tab. While the default digital resolution set from the chosen spectral width is typically much greater than the actual linewidths, check that the acquisition time is sufficient when acquiring large spectral widths or when trying to measure linewidths acurately. For example, in probe lineshape tests.

- A pulse tip angle of 45° is common for PROTON experiments. Consider increasing to 90° for quantification. Decrease to smaller values (30° and less) in case of very concentrated samples to avoid receiver/ADC overflow.
- The *total* interscan delay is the sum of the acquisition time and the relaxation delay. When acquiring a multiscan PROTON experiment for quantification, set the interscan delay to at least 5X the longest proton T_1 value in the molecule (see the T1_MEASURE experiment to measure these values). Typical values for an interscan delay range from 3-5s (d1 of 1-3s with an acquisition time of ~2s), which is not appropriate for quantification; consider using ~25s if the T_1 values are not measured. For precise quantification (<1%) a total relaxation delay of 10 x T_1 is appropriate.
- The PROTON dataset is used as a starting point for a wide range of experiments. Common next steps include setting up solvent suppression, choosing peaks for selective 1D experiments, and homo- and heteronuclear 2D experiments such as TOCSY and HSQC.

References:

R. J. Abraham, P. Loftus, Proton and Carbon-13 NMR Spectroscopy: An Integrated Approach, Heyden, London, 1978.

D. D. Traficante, Concepts Magn. Reson. 4 (1992) 153-160. (Quantitative Analysis)

CARBON

General description and usage

Description:

Uses the standard s2pul pulse sequence with decoupling to acquire a 1D- $^{13}\mathrm{C}$ dataset.

Usage:

The 1D CARBON experiment is a tool commonly used by organic chemists for structure elucidation and confirmation as the carbon chemical shift is highly sensitive to nearby functional groups. Proton decoupling is traditionally used to simplify Carbon spectra to a series of single lines with little or no coupling constant information available. Carbon chemical shifts are also often reliably calculated from structural input by prediction software. The CARBON experiment, however, requires a relatively large amount of sample (or spectrometer time) as compared to proton-detected experiments due to the lower relative natural abundance of the 13 C nuclide and its reduced receptivity when compared to ¹H. All parameters are set from the "Acquire" tab/"Default C13" panel unless otherwise specified.

Key parameters

Parameter	Description		
Solvent (solvent)	Set from "Start" tab/"Standard" panel		
Spectral Width (sw)	Select typical choices from pull down menu or type in specific ppm values		
Number of scans (nt)	Select typical choices from pull down menu*		
Relaxation Delay (d1)	Select typical choices from pull down menu*-controls the delay between scans		
Pulse Angle	Select typical choices from pull down menu*-controls the tip angle for the pulse		
H1 decoupling (dm)	Select typical choices from pull down menu- turns decoupling and/or NOE enhancement on/off		
Check S/N?	Select yes or no- acquires acquisition until S/N value between ppm indicated is > specified value		
Acquisition time (at)	Set from "Pulse Sequence" panel, controls the digital resolution (Hz/point, 1/at)		

NOTE

You can type specific values for these parameters manually in the appropriate boxes on the "Acquisition" panel.

2 Standard 1D - Std 1D Processing

Processing

A typical processing weighting (apodization) choice that provides S/N enhancement (at the expense of resolution) for a 1D carbon spectrum is line broadening, with an lb setting from $\sim 0.5 - 1$ Hz. Carbon spectra is rarely of high enough S/N for resolution enhancement; however other types of weighting functions are available under the "Process" tab on the "Weighting" panel.

Tips, tricks, and next steps

- Receiver gain (gain) is usually set to a high value (\geq 30), unless the sample is extremely concentrated or ¹³C-labelled.
- The acquisition time (at), which controls the digital resolution (Hz/point, which is equal to 1/at), is set on the "Acquisition" panel of the "Acquire" tab. Because carbon spectra are often acquired with large spectral widths, the default digital resolution (set from the chosen spectral width) may be insufficient to see small coupling; consider lengthening the acquisition time and/or narrowing the spectral width when acquiring coupled carbon spectra.
- The standard proton-decoupled CARBON spectrum is produced by turning on the decoupling during the pulse and acquisition. It is also standard practice to leave the decoupler on during the preacquisition delay (d1), which provides an NOE enhancement to the carbon signals caused by the attached protons. Typically the more protons attached, the larger the enhancement. For example, methyl signals appear larger than quaternary carbon signals. Turn off the NOE enhancement if accurate quantification is desired.
- A common next step for structure elucidation after acquiring the CARBON data is to acquire a series of (C)DEPT experiments to determine the multiplicity of the carbon peaks (for example, methyl, methylene, and methine).
- Carbon T_2 relaxation times can be very long, particularly for quaternary and aromatic carbons, and for degassed samples such as the 10% ethylbenzene standard. Such samples can exhibit the symptom of being difficult or impossible to phase correctly if the spectra are truncated. Increase the acquisition time (at) until the phasing issue is corrected.

- If there is insufficient sample to obtain a CARBON spectrum, consider acquiring proton-detected experiments such as HSQC and HMBC, which give similar information and require much less sample. These experiments can also be configured to give multiplicity information.
- The CARBON dataset can be used as a starting point for carbon-detected correlation experiments such as INADEQUATE or HETCOR spectra. Optimized spectral widths are transferred to the 2D experiment.

References:

F. W. Wehrli, T. Wirthlin, Interpretation of Carbon-13 NMR Spectra, Heyden, London, 1976.

R. J. Abraham, P. Loftus, Proton and Carbon-13 NMR Spectroscopy: An Integrated Approach, Heyden, London, 1978.

E. Breitmaier, W. Voelter, Carbon-13 NMR Spectroscopy: High-Resolution Methods and Applications in Organic Chemistry and Biochemistry, VCH, 1987.

FLUORINE

General description and usage

Description:

Uses the standard s2pul pulse sequence to acquire a 1D-¹⁹F dataset.

Usage:

The 1D FLUORINE experiment is typically used to confirm the presence of fluorine in a molecule. The large fluorine chemical shift range is highly sensitive to nearby functional groups. The experiment is nearly as sensitive as a 1D PROTON experiment. All parameters are set from the "Acquire" tab/"Default F19" panel unless otherwise specified.

Key parameters

Parameter	Description			
Solvent (solvent)	Set from "Start" tab/"Standard" panel			
Spectral Width (sw)	Type in specific ppm values			
Number of scans (nt)	Select typical choices from pull down menu*			
Relaxation Delay (d1)	Select typical choices from pull down menu*-controls the delay between scans			
Pulse Angle	Select typical choices from pull down menu*-controls the tip angle for the pulse			
Acquisition time (at)	Set from "Pulse Sequence" panel, controls the digital resolution (Hz/point, 1/at)			

NOTE

You can type specific values for these parameters manually in the appropriate boxes on the "Acquisition" panel.

Start Acquire F	Process Show Time	quire Stop	MoveSW Es	st. pw90	Sequence	Arrays	Seq. Help
Default F19 Acquisition Pulse Sequence Channels Flags Future Actions Overview	Experiment: FLUORINE Acquisition Options Spectral width - from Number of scans Relaxation Delay Pulse Angle	Solvent: d2o	0 mqq	Receiver	Decouple Gain (dB)	er: C13 0 2 Autogain	

2 Standard 1D - Std 1D Processing

Processing

A typical processing weighting (apodization) choice that provides S/N enhancement (at the expense of resolution) for a 1D spectrum is line broadening, with an lb setting from ~0.5 - 1 Hz. A suggested optimal value is an lb equal to the unfiltered peak linewidth at half-height. Other types of weighting functions are available under the "Process" tab on the "Weighting" panel. Suggested choices for resolution enhancement (at the expense of S/N) are "pseudoecho" and "res-enhance." When the weighting function is selected, values for these parameters are calculated based on the acquisition time. They can also be set manually with the "Interactive Weighting" button.

CAUTION

Resolution enhancing functions affect the spectral integration- do not use these types of apodization for quantification.

Many NMR probes contain fluorinated materials, which cause broad signals that can distort the baseline (especially when lying next to or outside the spectral window). The default processing parameters are set to use linear prediction to back predict the first seven points of the spectrum in order to flatten the baseline. These settings can be modified under the "Process" tab on the "More 1D" panel.

Tips, tricks, and next steps

• To optimize the spectral width (sw) further, place one cursor on each side of the desired region on the spectrum, click the **MOVEN** button located under the spectrum window and reacquire the data. The default range is set to cover the typical range of fluorine chemical shifts seen in organic molecules. As this range is large, once the fluorine signals are located, consider narrowing the chemical shift range and reacquiring the spectrum for better resolution.
- The acquisition time (at), which controls the digital resolution (Hz/point, which is equal to 1/at), is set on the "Acquisition" page of the "Acquire" tab. Because FLUORINE spectra are often acquired with large spectral widths, the default digital resolution (set from the chosen spectral width) may be insufficient to see small couplings; consider lengthening the acquisition time and/or narrowing the spectral width.
- The *total* interscan delay is the sum of the acquisition time (at) and the relaxation delay (d1). When acquiring a multiscan FLUORINE experiment for quantification, set the interscan delay to at least 5X the longest fluorine T_1 value of the signals of interest.
- Because of the potentially wide spectral window, determination and use of 90° pulses with FLUORINE NMR experiments can be problematic. Measure the pw90 with the transmitter offset (tof) positioned near an actual ¹⁹F resonance.
- This fluorine experiment produces a proton-coupled ¹⁹F spectrum. See the HF experiments (Chapter 11) for a proton-decoupled version of the experiment.
- When acquiring impure samples of fluorinated compounds from a biological origin, consider using fluorine spectra in lieu of a more complicated proton spectrum as appropriate.

References:

E. G. Brame, Anal. Chem. 34 (1962) 591-592. (Spectra Structure Correlations of F19)

E. F. Mooney, An Introduction to 19F NMR Spectroscopy, Heyden, London, 1970.

S. Berger, S. Braun, H. O. Kalinowski, NMR Spectroscopy of the Non-Metallic Elements, Wiley, New York, (1997) 398-698.

J. Battiste, R. A. Newmark, Prog. NMR. Spectrosc. 48 (2006) 1-23. (Multidimensional $^{19}{\rm F}$ NMR)

PHOSPHORUS

General description and usage

Description:

Uses the standard s2pul pulse sequence to acquire a 1D-³¹P dataset.

Usage:

The PHOSPHORUS experiment is typically used to confirm the presence of phosphorus in a molecule. The large phosphorus chemical shift range is highly sensitive to nearby functional groups and the oxidation state of the phosphorus atom. All parameters are set from the "Acquire" tab/"Default P31" panel unless otherwise specified.

Key parameters

Parameter	Description
Solvent (solvent)	Set from "Start" tab/"Standard" panel
Spectral Width (sw)	Type in specific ppm values
Number of scans (nt)	Select typical choices from pull down menu*
Relaxation Delay (d1)	Select typical choices from pull down menu*- controls the delay between scans
Pulse Angle	Select typical choices from pull down menu*- controls the tip angle for the pulse
H1 decoupling (dm)	Select typical choices from pull down menu- turns decoupling and/or NOE enhancement on/off
Check S/N?	Select yes or no- acquires acquisition until S/N value between ppm indicated is > specified value
Acquisition time (at)	Set from "Pulse Sequence" panel, controls the digital resolution (Hz/point, 1/at)

NOTE

2 Standard 1D - Std 1D Processing

Processing

A typical processing weighting (apodization) choice that provides S/N enhancement (at the expense of resolution) for a 1D spectrum is line broadening, with an lb setting from $\sim 0.5 - 1$ Hz. Other types of weighting functions are available under the "Process" tab on the "Weighting" panel.

PHOSPHORUS spectra often contain broad signals, which distort the baseline. The default processing parameters are set to use linear prediction to back predict the first five points of the spectrum in order to flatten the baseline. These settings can be modified under the "Process" tab on the "More 1D" panel.

Tips, tricks, and next steps

- To optimize the spectral width (sw) further, place one cursor on each side of the desired region on the spectrum, click the button located under the spectrum window and reacquire the data.
- The appropriate receiver gain (gain) is most easily set by making sure that the Autogain option is checked on the right side of the "Acquire" tab. The software optimizes the gain setting before data collection.
- The acquisition time (at), which controls the digital resolution (Hz/point, which is equal to 1/at), is set on the "Acquisition" page of the "Acquire" tab. Because PHOSPHORUS spectra are often acquired with large spectral widths, the default digital resolution (set from the chosen spectral width) may be insufficient to see coupling; consider lengthening the acquisition time and/or narrowing the spectral width.
- If the sample was purified using reversed-phase HPLC, remember that many mobile phases commonly used in chromatography contain nonvolatile phosphate buffers. Such samples contain large background phosphorus signals from the buffer; consider using a different buffer such as formic acid when anticipating the need of ³¹P NMR data.

It is also possible to use presaturation to suppress a large, undesired peak in the phosphorus spectrum. From the PHOSPHORUS parameter set, go to the "Experiments" menu at the top of the VnmrJ window and choose "Convert current parameters to do... Solvent Suppression – Select Peaks => PRESAT submenu". The "Default" panel now displays the appropriate parameters to configure the frequency/frequencies for suppression.

References:

O. Khul, Phosphorous-31 NMR Spectroscopy, Springer (2008) 1-131.

(H)PRESAT

General description and usage

Description:

A standard s2pul pulse sequence to acquire a 1D-¹H dataset with a presaturation option to suppress strong signals. Single peaks are suppressed with a hard pulse, multiple peaks with a shaped pulse.

Usage:

Presaturation is a simple method of removing strong signals from a spectrum using irradiation during all or part of the relaxation delay. Common reasons for wanting to suppress signals include: (i) the presence of large solvent signals, (ii) use of nondeuterated solvents, like H_2O , (iii) use of samples with large background impurities or buffers such as urea or acetate, (iv) use of samples of low concentration when the residual proton signal from the deuterated solvent overwhelms the peaks of interest. The most straightforward method is to acquire a standard PROTON spectrum or a scout scan first and then interactively choose the peaks to suppress from this data. The software also allows the peaks to be chosen automatically via a threshold, or via a pull-down menu with several selections for water. These different setup methods are detailed in

the "Tips, tricks, and next steps" section. If additional experiments are set up from the (H)PRESAT data set, all the presaturation parameters are transferred to the new experiment. All parameters are set from the "Acquire" tab/"Default" panel unless otherwise specified.

Key parameters

Parameter	Description
Solvent (solvent)	Set from "Start" tab/"Standard" panel
Spectral Width (sw)	Type in specific ppm values (if using previously acquired proton data to select peaks for suppression, do not change)
Saturate? (satmode)	Choices of water type to suppress in pull-down, or check boxes to select later from scout scan, or type in specific water frequency, or suppression of n tallest peaks
Number of scans (nt)	Select typical choices from pull down menu*
Presaturation Delay (satdly)	Select typical choices from pull down menu*- controls the delay between scans
PURGE (prgflg)	Check box adds PURGE pulse to improve saturation, choose 2-step (default) or 4-step

NOTE

2 Standard 1D - Std 1D

Processing

Processing

The processing is typically the same as processing used for standard PROTON spectrum, except manual phasing may be required due to an unphaseable residual signal from the suppressed peaks. A typical processing weighting (apodization) choice that provides S/N enhancement (at the expense of resolution) for a 1D spectrum is line broadening, with an lb setting from ~0.5 - 1 Hz. A suggested optimal value is line broadening equal to the unfiltered peak linewidth at half-height. Other types of weighting functions are available under the "Process" tab on the "Weighting" panel.

Tips, tricks, and next steps

• Choosing the (H)PRESAT experiment from a previously acquired PROTON data set allows for interactive selection of the peaks to be suppressed, and the "Default" panel appears differently. Choose single or multifrequency presat with the check boxes, place the cursors on or around the peak to be suppressed and click <u>Select</u>. The width of the peaks chosen determine the power used for the presaturation. Repeat for additional peaks.

Default	Experiment: PRESAT Solvent: cdcl3	Observe: H1 Decoupler: C13	
Pulse Sequence RESAT Channels Tags Future Actions Overview	Select Presaturation Band using cusor(s) Single-Freq PRESAT Box/Cursor CLEAR Select ShowList	Receiver Gain (dB): 30 Autogain:	
	Number of scans 8 Presaturation Delay 2 PURGE 4-step /		

If a PROTON spectrum has not been previously acquired but the "Select Later" and "Do Scout" options were checked on the "Default" panel shown in the "Key parameters" sections, the scout scan is acquired and the data displayed, now with the "Default" panel shown to facilitate the interactive peak selection.

- The appropriate receiver gain (gain) is most easily set by making sure that the Autogain option is checked on the right side of the "Acquire" tab. The software optimizes the gain setting before data collection. Selecting autogain is a good choice in most solvent suppression experiments acquired in automation.
- When you click the check box to "Suppress... n tallest peaks", and type a value for n, a scout scan is acquired, and then the software sets up suppression on n peaks as measured from the threshold. This approach works well when acquiring in automation mode.
- The choices for water type in the "Saturate?" pull-down menu control the power of the RF field used for the presaturation. The highest power (50-Hz field) is used for the 90% H₂O, while the other choices (HDO/D₂O, wet DMSO) use lower power. The saturation frequency (satfrq) for the 90% H₂O suppression is automatically optimized for maximum efficiency.
- The power, length, and offset of the presat pulse can be modified manually in the "PRESAT" panel. Remember that presat powers are typically low (typically a small, negative number) and the length usually 2s or less. If additional interscan delay time is needed, the relaxation delay d1 can be set to a larger value than the presat delay.

2 Standard 1D - Std 1D

Tips, tricks, and next steps

- Adding the 2-step (or 4-step) purge option can significantly improve the presaturation efficiency, particularly for large water peaks. However the efficiency of the purge option is dependent upon the pw90 and B1 (in)homogeneity of the probe. The 4-step purge produces the best water suppression. Note, however, that the purge phase cycle is *added* to all subsequent experiments, for example, the minimum nt for 4-step PURGE is 4.
- Once the solvent suppression is set up satisfactorily, selecting another experiment type. For example, zTOCSY, NOESY, and so on, automatically retain suppression parameters for the new experiment. To turn off presaturation, unselect the "Presaturation" check box on the "PRESAT" panel.
- (H)PRESAT also suppresses any exchangeable protons. Use wet-type suppression to preserve these signals

References:

P. J. Hore, Methods Enzymol. 176 (1989) 64-77. (Solvent Suppression)

M. Gueron, P. Plateu, M. Decorps, Prog. NMR Spectrosc. 23 (1991) 135-209. (Solvent Signal Suppression)

R. T. MacKay, Ann. Rep. NMR. Spectrosc. 66 (2009) 33-76. (Advances in Solvent Suppression)

Standard 1D - Std 1D2Tips, tricks, and next steps

2 Standard 1D - Std 1D (H)wet1D

(H)wet1D

General description and usage

Description:

Pulse sequence to acquire a $1D^{-1}H$ dataset with selective excitation pulses to exclude strong signals.

Usage:

WET solvent suppression removes strong signals from a spectrum by creating a shaped pulse that excites only the solvent resonances followed by the use of gradients to suppress the excited resonances. WET suppression has the advantage over other methods (like (H)PRESAT) that the exchangeable protons are often not suppressed as much. It also facilitates the decoupling and hence removal of ¹³C satellites of organic solvents. However (H)wet1D does not result in the smallest residual H_2O signal, and it can also produce baseline artifacts that interfere somewhat with integration. Common reasons for wanting to suppress signals include: (i) the presence of large solvent signals, (ii) use of nondeuterated solvents, for example H_2O , (iii) use of samples with large background impurities or buffers, such as urea or acetate, or (iv) use of samples of low concentration when the residual proton signal from the deuterated solvent overwhelms the peaks of interest. The most straightforward method is to acquire a standard PROTON spectrum or a scout scan first and from this data, interactively choose the peaks to be suppressed. The software also allows the peaks to be chosen automatically via a threshold or a number of common solvent selections. These different setup methods are detailed in the "Tips, tricks, and next steps" section. If additional experiments are set up from the (H)wet1D data set, all the presaturation parameters are transferred to the new experiment. All parameters are set from the "Acquire" tab/"Default" panel unless otherwise specified.

Parameter	Description
Solvent (solvent)	LSet from "Start" tab/"Standard" panel
Spectral Width (sw)	Type in specific ppm values (if using previously acquired proton data to select peaks for suppression, do not change)
WET peaks	Choices of define now (shows list of solvents when checked) or check boxes to select later from scout scan, or suppression of n tallest peaks, or type in specific water frequency
Number of scans (nt)	Select typical choices from pull down menu*
Relaxation Delay (d1)	Select typical choices from pull down menu*- controls the delay between scans
C13 decoupling during WET?	Turns decoupling on to suppress solvent ¹³ C satellites, for example, from CH ₃ CN
Optimize CF	Optimizes the compression factor for the transmitter power used for the wet shape

Key parameters

NOTE

Processing

The processing is typically the same processing used for standard PROTON spectrum, except manual phasing may be required due to an unphaseable residual signal from the suppressed peaks. A typical processing weighting (apodization) choice that provides S/N enhancement (at the expense of resolution) for a 1D spectrum is line broadening, with an lb setting from $^{\circ}0.5 - 1$ Hz. A suggested optimal value is line broadening equal to the unfiltered peak linewidth at half-height. Other types of weighting functions are available under the "Process" tab on the "Weighting" panel.

Tips, tricks, and next steps

• Choosing the (H)wet1D experiment from a previously acquired PROTON data set allows for interactive selection of the peaks to be suppressed, and the "Default" panel appears differently (see the following figure). Choose single or multifrequency presat with the check boxes. Place the cursors on or around the peak to suppress and click Select Repeat for additional peaks. A threshold can also be set to select peaks automatically.

If a PROTON spectrum has not been previously acquired but the "Select Later" and "Do Scout" options were checked on the "Default" panel shown in the "Key parameters" sections, the scout scan is acquired and the data displayed, now with the "Default" panel shown above to facilitate the interactive peak selection.

- The appropriate receiver gain (gain) is most easily set by making sure that the Autogain option is checked on the right side of the "Acquire" tab. The software optimizes the gain setting before data collection. Selecting autogain is a good choice in most solvent suppression experiments acquired in automation.
- When you click the check box to "Suppress... n tallest peaks", and type a value for n, a scout scan is acquired, and then the software sets up suppression on n peaks as measured from the threshold. This approach works well when acquiring in automation mode.
- When selecting peaks for suppression via the solvent check boxes, note that the most common choices are displayed, while clicking the "more" button shows additional, less typical choices.
- Try to keep the widths of the selected peak >60 Hz, as peaks that are too narrow create long, shaped pulse durations.
- If the pw90 is reasonably accurate, the suppression quality using the default parameters is adequate for most samples. Click the "Optimize CF" check box to optimize suppression. This arrays and attempts to optimize a scaling factor for the shaped pulses tpwr_cf, looking for the value that produces the best suppression. If the desired number of scans is large (>32), this optimization takes a fair amount of time. Consider lowering nt for the optimization and then increasing after the parameters are set. This optimization can also be done manually from the "WET" panel.

2 Standard 1D - Std 1D

Tips, tricks, and next steps

• Once the solvent suppression is set up satisfactorily, selecting another experiment type. For example, zTOCSY, NOESY, and so on, automatically retain suppression parameters for the new experiment. To turn off WET, unselect the "WET" check box on the "WET" panel.

References:

R. Ogg, P. Kingsley, J. Taylor, J. Magn. Reson. B104 (1994) 1-10. (WET)

S. Smallcombe, S. L. Patt, P. Keifer, J. Magn. Reson. A117 (1995) 295-303. (WET – Applications to LCNMR)

S. L. Patt, J. Magn. Reson. 96 (1992) 94-102. (Shifted Laminar Pulses)

Standard 1D - Std 1D2Tips, tricks, and next steps

T1_MEASURE

General description and usage

Description:

Uses an inversion-recovery pulse sequence $(180^{\circ}-d2-90^{\circ})$ to measure spin-lattice (T₁ or longitudinal) relaxation rates.

Usage:

Knowledge of the T1 relaxation rates for the sample is important for multiscan quantification experiments. Accurate quantification requires an interpulse delay of at least 5x the longest T_1 of interest in the molecule. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Key parameters

Parameter	Description
Solvent (solvent)	Set from "Start" tab/"Standard" panel
Spectral Width (sw)	Type in specific ppm values
Number of scans (nt)	Select typical choices from pull down menu*
Relaxation Delay (d1)	Select typical choices from pull down menu*- controls the delay between scans; set longer for accurate T ₁ measurements
Decoupling (dm)	Select choice from pull down menu- for X nuclei, choose coupled/uncoupled; +/- NOE
T1 Mode	Select choice from pull down menu- choose inversion recovery or progressive saturation
Min/Max T1; Total Exp Time	Use to set the array of values for the T ₁ d2 delay- choose a min/max value, select desired total exp time (controls # of steps) and click Array Relaxation Delay

NOTE

Start Acquire P	Process Show Time	cquire Stop Sequ	ence Arrays Seq. Help	4)
Defaults Acquisition	Experiment: INVREC	Solvent: d2o	Observe: H1 Decoupler: C13	
Pulse Sequence PRESAT Channels Flags Future Actions Overview	Acquisition Options - Spectral Width: Number of scans Relaxation Delay Decoupling T1 Mode Min T1 Max T1 Total Exp Time	-2.0 to 14.0 ppm 4	Receiver Gain (dB) 30	

Processing

The T1_MEASURE experiment, with the inversion recovery option selected, produces an array of 1D spectra, where the peaks heights slowly progress through zero and then become the opposite phase as the value of d2 increases. To process the entire array, use $\begin{array}{c} \text{Autoprocess} \\ \text{options to choose a} \end{array}$ single spectrum in the array, use the $\begin{array}{c} \text{Options to choose a} \\ \text{Options to choose a} \end{array}$ buttons to choose a spectrum. Alternatively type ds(#), where # is the number of the spectrum in the array you wish to display. Clicking $\begin{array}{c} \text{Ind} \\ \text{Options to choose a} \end{array}$ on the vertical "ArrayedSpectra" panel displays all the spectra in a horizontal array. On the "Process" tab, there is a special panel labeled "T1 Analysis". This panel contains tools to facilitate the T₁ analysis. Click $\begin{array}{c} \text{DisplayLast Spectrum} \\ \text{Option the shortest analysis peak. Now click } \end{array}$ to fit the data to T₁ curves for each peak. Use the display and print buttons to view the results.

Basic	T1 processing	ACQUISITION	TRANSMITTER	SPECIAL	PROCESS
Default F1 Analysis Weighting Display More 1D ntegration Cursors/Line Lists Not Fext Output	On last spectrum, expand region and set threshhold for T1 Analysis. Display Last Spectrum Do T1 Analysis Display All Fits Display Selected Fits Display Fit Summary Plot Selected Fits Print Fit Summary	seqfil s2pul sw 8012.8 at 2.045 np 32768 fb not used bs 32 d1 1.000 nt 8 ct 0 SAMPLE date March 8, 1993 solvent d20 sample	tn H1 sfrq 499.839 tof 499.8 pw 2.850 DECOUPLER dn C13 dof 0 dm nnn decwave W40_HCN5mm dpwr 45 dmf 32258	temp 25.0 spin 20 gain not used hst 0.008 pw90 5.700 PRESATURATION satmode n wet n Details in dgss	1b r sb r gf r 1sfid r fn r FLAGS 11 in dp hs

Tips, tricks, and next steps

• For the most accurate results, ensure that the relaxation delay is 5x the longest expected T_1 - the default value is 20s, which assumes the longest T_1 is < 4s. If you find that your T_1 values of interest are longer, lengthen this delay appropriately and reacquire the data.

- The appropriate receiver gain (gain) is set from a PROTON spectrum with a 90° pulse angle. The "Autogain" option is not available for arrayed spectra.
- An accurate 90° pulse measurement is important for this experiment. For best results, measure the 90° pulse for your sample with a standard proton experiment before the T_1 analysis.
- To save time, you can perform the analysis initially with a small array containing a broad range of d2 values. Once you know the approximate value of d2 that produces the null, you can perform a second analysis with smaller array steps to target the exact value.
- To view the values in the d2 array, click Arrays displayed underneath the spectrum when the "Acquire" tab is selected.
- If you are estimating the T_1 value visually from the null spectrum, remember that $T_1 = d2^*1.44$, at the null point, as T_1 relaxation is a first-order rate process.

References:

A. Derome, Modern NMR Techniques for Chemistry Research, Pergamon Press, New York, 1987.

T2_MEASURE

General description and usage

Description:

Uses a spin-echo pulse sequence to measure spin-spin (T $_2$ or transverse) relaxation rates.

Usage:

This experiment allows one to measure the transverse relaxation (T_2) in the absence of magnetic field inhomogeneity, rather than the rate constant for the decay of the FID (T_2^*) , which is reflected in the 1D linewidths. T_2 relaxation rates are correlated with molecular size, so their measurement can provide insight for small molecules regarding aggregation, binding to large molecules (for example, proteins), or other noncovalent interactions. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Key parameters

Parameter	Description		
Solvent (solvent)	Set from "Start" tab/"Standard" panel		
Spectral Width (sw) Type in specific ppm values			
Number of scans (nt)	Select typical choices from pull down menu*		
Relaxation Delay (d1)	Select typical choices from pull down menu [*] - controls the delay between scans; set longer for accurate T ₂ measurements		
Decoupling (dm)	Select choice from pull down menu- for X nuclei, choose coupled/uncoupled; +/- NOE		
Min/Max T2; Total Exp Time	Use to set the array of values for the T ₂ delay- choose a min/max value, select desired total exp time (controls # of steps) and click "Array Relaxation Delay" button		

NOTE

Defaults Acquisition	Experiment: CPMGT2	Solvent: d2o	Observe: H1 Decoupler: C13
Pulse Sequence	Acquisition Options		Receiver Gain (dB) 30
PRESAT Channels Flags	Spectral Width: Number of scans	-2.0 to 14.0 ppm 4 •	🗌 Autogain
Future Actions Overview	Relaxation Delay Decoupling	10 s Coupled - NOE	
	Min T2 Max T2	0.2 s 2 s	
	Total Exp Time	0.1 h Array Relaxation Delay	

Processing

The T2_MEASURE experiment produces an array of 1D spectra, where the peaks heights slowly progress to zero as the value of the delay approaches the value for full T_2 relaxation. To process the entire array, use Autoprocess

or type "wft". To display a single spectrum in the array, use the $\bigcirc \bigcirc \bigcirc$ buttons to choose a spectrum. Alternatively type ds(#), where # is the number of the spectrum in the array you wish to display. Clicking \blacksquare on

the vertical "ArrayedSpectra" panel or typing "dssh" displays all the spectra in a horizontal array. On the "Process" tab, there is a special panel labeled " T_2 Analysis". This panel contains tools to facilitate the T_2 analysis. Click DisplayLast Spectrum, expand the spectral region for the T_2 analysis and set the threshold just below the shortest analysis peak. Now click DoT2 Analysis to fit the data to T_2 curves for each peak. Use the display and print buttons to view the results.

Start Acquire Pro	cess Transform Autoprocess	Display Spectrum	Clear Screen Can	cel	
Start Acquire Pro Basic Default T2 Analysis Weighting Display More 1D Integration Cursors/Line Lists Plot Text Output	T2 processing On first spectrum, expand region and set threshhold for T2 analysis. Display First Spectrum Do T2 Analysis	ACQUISITION seqfil s2pul sw 8012.8 at 2.045 np 32768 fb not used bs 32 d1 1.000 nt 8	TRANSHITTER tn H1 sfrq 499.839 tof 499.9 tpwr 600 pw 2.850 DECOUPLER dn C13 dof 0	SPECIAL temp 25.0 spin 20 gain not used hst 0.008 pw90 5.700 alfa 10.000 PRESATURATION satmode n	PROCESS 1b r sb r gf r awc r 1sfid r fn r FLAGS 11
	Display All Fits Display Selected Fits Display Fit Summary Plot Selected Fits Print Fit Summary Clean	nt E ct (SAMPLE date March 8, 199 solvent d20 sample	da nnn decwave W40_HCN5ma dpwr 45 dmf 32258	wet n Details in dgss	in dp hs

Tips, tricks, and next steps

• An accurate 90° pulse measurement is important for this experiment. For best results, measure the 90° pulse for your sample with a standard proton experiment before the T₂ analysis.

- The appropriate receiver gain (gain) is set from a PROTON spectrum with a 90° pulse angle. The "Autogain" option is not available for arrayed spectra.
- To save time, the analysis can be performed initially with a small array containing a broad range of T_2 values. Once the approximate value of T_2 that produces the null is determined, a second analysis can be performed with smaller array steps to target the exact value.
- To view the values in the d2 array, click Arrays displayed underneath the spectrum when the "Acquire" tab is selected.
- Because broad peaks have short T_2 values, this sequence is sometimes used to remove large, broad, background peaks from spectra and flatten the baseline ("T2 filter"). Select a single, short value (0.1-0.2s) for the T_2 value (bigtau) and acquire the data.
- Strictly speaking, the T2_MEASURE experiment only works well on singlets. For example, it is good for $^{13}\mathrm{C}$ spectra. For coupled systems, multiplet distortion occurs during the echo, the degree of which depends on the value of T₂ delay.

References:

H. Y. Carr, E. M. Purcell, Phys. Rev. 94 (1954) 630-638. (T2)

S. Meiboom, D. Gill, Rev. Sci. Instrum. 29 (1958) 688-691. (T2)

A. Derome, Modern NMR Techniques for Chemistry Research, Pergamon Press, New York, 1987.

2 Standard 1D - Std 1D (C)APT

(C)APT

General description and usage

Description:

Attached proton test experiment to determine carbon multiplicity.

Usage:

The (C)APT experiment is used as an adjunct or a replacement for a 1D CARBON spectrum. The default parameters result in a spectrum with methyl and methine-type carbon signals having opposite phase with respect to that of methylenes and quaternary-type carbons. Quaternary carbon lines typically are smaller than methylene signals, and can often be distinguished in this manner. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Key parameters

Parameter	Description
Solvent (solvent)	Set from "Start" tab/"Standard" panel
Spectral Width (sw)	Select typical choices from the pull down menu or type in specific ppm values
Number of scans (nt)	Select typical choices from pull down menu*
Relaxation Delay (d1)	Select typical choices from pull down menu*- controls the delay between scans
Check S/N?	Select yes or no- acquires data until S/N value between ppm indicated is > specified value

NOTE

Start Acquire F	Process Show Time Acquire Stop Sequence	Arrays Seq. Help	
Acquisition Pulse Sequence Channels Flags Future Actions Overview	Experiment: APT Solvent: d2o Acquisition Options Spectral Width (select) (or enter): -17.5 to 237.5 ppm Number of scans 256 Relaxation Delay 1 s Check S/N? yes no between 151.2 and -8.0 ppm at every 64 scans & Stop at 100	Observe: C13 Decoupler: H1 Receiver Gain (dB) 50 Autogain	

2 Standard 1D - Std 1D Processing

Processing

A typical processing weighting (apodization) choice that provides S/N enhancement (at the expense of resolution) for a 1D spectrum is line broadening, with an lb setting from ~0.5 - 1 Hz. Other types of weighting functions are available under the "Process" tab on the "Weighting" panel. Manual phasing may be necessary as the spectra often contain both positive and negative peaks. Proper phasing is typically with the solvent resonance "up" which results in quaternary and CH_2 carbons also pointing up and CH/CH_3 carbons pointing down.

Tips, tricks, and next steps

- Receiver gain (gain) is usually set to a high value (\geq 30), unless the sample is highly concentrated or ¹³C-labelled.
- The (C)DEPT experiment can produce edited carbon subspectra containing a single type of carbon multiplicity for easy interpretation. However the (C)APT is a single experiment, compared to multiple experiments for the full (C)DEPT series. Protonated carbons are also enhanced in DEPT by magnetization transfer from the protons as opposed to APT.
- If there is insufficient sample to obtain an (C)APT spectrum, consider acquiring proton-detected experiments such as gHSQC, which gives similar information and requires much less sample. The gHSQC experiment can also be acquired with multiplicity editing to give the same type of information as the (C)APT experiment.

References:

S. L. Patt, J.N. Shoolery, J. Magn. Reson. 46 (1982) 535-539. (APT)

Standard 1D - Std 1D2Tips, tricks, and next steps

2 Standard 1D - Std 1D (C)DEPT

(C)DEPT

General description and usage

Description:

Experiment to determine carbon multiplicity.

Usage:

(C)DEPT experiments are used to produce edited subspectra of 1D carbon data that contain only carbons of a certain multiplicity type. Choices include (1) methines and methyls peaks positive, methylenes negative, (2) methines only, or (3) methyls, methylenes, and methines (no quaternary carbons). Mathematical combinations of the three choices can be used to produce spectra that contain only a specific type of carbon, for example, methylenes are only produced by the linear combination of choices 1 - 3. Additionally, quaternary carbons can be selected (DEPTQ) to be in-phase or anti-phase with respect to the methyls or not to be present at all (traditional DEPT). With full DEPTQ editing (eight spectra), quaternary carbons can also be separated out. Individual subspectra for each carbon are generated with the "Full Edit" choice of the "XH Multiplicity editing" pull down. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Key parameters

Parameter	Description
Solvent	Set from "Start" tab/"Standard" panel
Spectral Width (sw)	Select typical choices from the pull down menu or type in specific ppm values
Number of scans (nt)	Select typical choices from pull down menu*
Relaxation Delay (d1)	Select typical choices from pull down menu*
XH Multiplicity editing (mult)	Select choice of (C)DEPT experiment from pull down menu
Quaternary Carbons (qphase)	Select choice of DEPTQ- allows for the addition of antiphase or in-phase quat. carbons
Quat. 13C relax delay (qrelax)	Allows for an additional delay to be included for subspectra containing quat. carbons in the sequence

NOTE

Processing

A typical processing weighting (apodization) choice that provides S/N enhancement (at the expense of resolution) for a 1D proton spectrum is line broadening, with an lb setting from $\sim 0.5 - 1$ Hz. Other types of weighting functions are available under the "Process" tab on the "Weighting" panel. Manual phasing may be necessary as the spectra can contain both positive and negative peaks.

Tips, tricks, and next steps

- Receiver gain (gain) is usually set to a high value (\geq 30), unless the sample is highly concentrated or ¹³C-labelled.
- The (C)DEPT experiment can produce edited carbon subspectra containing a single type of carbon multiplicity for easy interpretation. Protonated carbons are also enhanced in DEPT by magnetization transfer from the protons as opposed to APT.
- A single DEPT experiment with the "XH/XH3 up & XH2 down" option along with the Quaternary carbon "Antiphase" option is a good alternative to APT, as it provides the same information, but with enhanced sensitivity for protonated carbons.

• If there is insufficient sample to obtain a (C)DEPT spectrum, consider acquiring proton-detected experiments such as gHSQC, which gives similar information and requires much less sample. The gHSQC experiment can also be acquired with multiplicity editing to give the same type of information as the (C)DEPT experiment.

References:

D. M. Doddrell D. T. Pegg M. R. Bendall, J. Magn. Reson. 48 (1982) 323-327. (DEPT)

M. A. Smith, H. Hu, A. J. Shaka, J. Magn. Reson. 151 (2001) 269-283. (BIP Pulses)

P. Bigler, R. Kummerle, W. Bermel, Magn. Reson. Chem. 45 (2007) 469-472. (DEPTq)

2 Standard 1D - Std 1D PureShift 1D

PureShift 1D

General description and usage

Description:

Uses a double spin-echo type experiment to acquire an effectively homonuclear-decoupled proton spectrum.

Usage:

The PureShift 1D experiment is useful to simplify complicated proton spectra dominated by overlapping multiplets. The result is a "proton-decoupled" spectrum of singlets at the true chemical shift of each proton multiplet. The sensitivity is much less than the standard proton experiment. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Key parameters

Parameter	Description
Solvent(solvent)	Set from "Start" tab/"Standard" panel
Spectral Width(sw)	Type in specific ppm values
Number of scans(nt)	Select typical choices from pull down menu*
Relaxation Delay(d1)	Select typical choices from pull down menu*- controls the delay between scans
Slice Selection Bandwidth	Bandwidth for selective pulse- 100-Hz standard
"PureShift tau delay"	Delay for effective homonuclear decoupling

NOTE

Defaults Acquisition	Experiment: PS1D Solvent: d2o	Observe: H1 Decoupler: C13
Pulse Sequence PRESAT WET Channels Flags Future Actions Overview	Acquisition Options Spectral width - from -2.0 to 14.0 ppm Number of scans 8 Relaxation Delay 1 Steady State -2 Slice Selection Bandwidth 100.0 Hz Slice selection pulse pattern: Isnob2 "PureShift tau delay" 8.0 ms Suitable for J values < ~12.5 Hz	Receiver Gain (dB): 30

Processing

As the sensitivity of the PureShift 1D experiment is lacking compared to a standard PROTON, a good processing weighting choice is one which provides S/N enhancement, for example, line broadening (lb ~0.5 - 1 Hz).

Tips, tricks, and next steps

- Smaller bandwidths for the selective pulse result in greater selectivity (for example, decoupling of closely spaced coupling partners), but longer experiment times and lower sensitivity. 100 Hz is a good compromise starting point. Spectral width (sw) can also be decreased to include only the region of interest.
- The "PureShift tau delay" is inversely related to the maximum coupling constant that can be effectively decoupled. Decrease this delay for larger couplings- refer to the display in the panel for the effective maximum coupling constant.

References:

P. Xu, X. Wu, R. Freeman, J. Magn. Reson. 95 (1991) 132-148. (Homonuclear Decoupling)

K. Zangger, H. Sterk, J. Magn. Reson. 124 (1997) 486-489. (Homonuclear Broadband Decoupling)

J. A. Aguilar, S. Faulkner, M. Nilsson, G. A. Morris, Angew. Chem. Int. Ed., 49 (2010) 3901-3903. (PureShift 1D)
Standard 1D - Std 1D2Tips, tricks, and next steps

(H)HomoDec

General description and usage

Description:

Uses basic irradiation to decouple a $1D-{}^{1}H$ dataset at a single frequency (hard pulse) or multiple frequencies (shaped pulse).

Usage:

Before widespread use of the 2D COSY and TOCSY experiments, this experiment was widely used to define homonuclear coupling partners. Irradiation at a given frequency for a multiplet results in a collapse of coupled multiplets. Where the TOCSY and/or COSY can be difficult to interpret due to overlap, this experiment may still be a good choice for simplifying highly coupled systems. In addition to the homonuclear decoupling ("homo"), which can be used in any pulse sequence, this sequence simultaneously saturates the signal which is decoupled to remove artifacts. This experiment is most easily set up from a previously acquired PROTON spectrum so the frequencies and widths for the decoupling are known, and can be chosen interactively with the cursor. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Key parameters

Parameter	Description
Solvent (solvent)	Set from "Start" tab/"Standard" panel
Spectral Width(sw)	Set from previously acquired PROTON*
Number of scans(nt)	Select typical choices from pull down menu*
Presaturate	Check box to presaturate the selected resonances to suppress decoupling artifacts – highly recommended
Decoupling Duty Cycle	Use to control % of time the decoupling is on- longer time improves decoupling at the expense of S/N (10% recommended)
Multifrequency Decoupling	Check box for multiple frequencies
No., ppm, width of selective frequencies	Use top box to set the number of selective frequencies. Boxes underneath are used to set the desired ppm and width in Hz of each frequency

NOTE

You can type specific values for these parameters manually in the appropriate boxes on the "Acquisition" panel.

Defaults Acquisition	Experiment: HOMODEC Solvent: d2o Observe: H	1 Decoupler: C13
Pulse Sequence PRESAT WET Channels Flags Future Actions Overview	Acquisition Options Number of scans: 8 Presaturate? Decoupling Duty Cycle: 10 % Multifrequency decoupling:	Receiver Gain (dB): 30
	No. of Selective Frequencies (max: 5): 0 Selective Freq: 0.00 0.00 0.00 0.00 ppm Selective width: 10.0 0.0 0.0 0.0 ptm	

Processing

The processing is typically the same as the process used for standard PROTON spectrum, except manual phasing may be required due to antiphase/negative peaks at the decoupling frequency. A typical processing weighting (apodization) choice that provides S/N enhancement (at the expense of resolution) for a 1D proton spectrum is line broadening, with an lb setting from ~0.5 - 1 Hz. A suggested optimal value is line broadening equal to the unfiltered peak linewidth at half-height. Other types of weighting functions are available under the "Process" tab on the "Weighting" panel.

Tips, tricks, and next steps

• If the HOMODEC experiment is selected in an experiment already containing PROTON data, the decoupling band selection can be chosen interactively. Place the cursors around the multiplet to decouple and click "Select". Repeat for multiple decoupling bands; click "CLEAR" to erase previous choices.

Defaults Acquisition	Experiment: HOMODEC Solvent: cdcl3	Observe: H1	Decoupler: C13	
Pulse Sequence PRESAT WET Channels Flags Future Actions Overview	Acquisition Options Number of scans: Presaturate? Decoupling Duty Cycle: 10 % Multifrequency decoupling: Select Decoupling Bands using cursors Box/Cursor Expand/Full Select CLEAR ShowList		Receiver Gain (dB):	30

• Acquiring several spectra with single frequency decoupling usually give cleaner spectra and more easily interpretable results than one spectrum with multiple simultaneous decouplings.

• A 2D gCOSY/gDQCOSY spectrum may be a better choice for a standard structure elucidation/assignment problem as it can provide the same information for the entire molecule with a single experiment that can be obtained in <5 min. with a reasonable sample amount.

References:

J. K. M. Sanders, J. D. Mersh, Prog. NMR Spectsoc. 15 (1982) 353-400. (Difference Spectroscopy)

CARBONecho

General description and usage

Description:

Acquires a 1D- ^{13}C dataset with a double echo from bip pulses to allow delayed data acquisition without the need for linear back prediction.

Usage:

This experiment is highly specialized to acquire 1D carbon data on a high Q probe, such as a 13 C cold probe, which may have long pulse ringdown times. All parameters are set from the "Acquire" tab/"Default C13" panel unless otherwise specified.

Key parameters

Parameter	Description
Solvent (solvent)	Set from "Start" tab/"Standard" panel
Spectral Width (sw)	Select typical choices from pull down menu or type in specific ppm values
Number of scans (nt)	Select typical choices from pull down menu*
Relaxation Delay (d1)	Select typical choices from pull down menu*-controls the delay between scans
Pulse Angle	Select typical choices from pull down menu*-controls the tip angle for the pulse
H1 decoupling (dm)	Select typical choices from pull down menu- turns decoupling and/or NOE enhancement on/off
Check S/N?	Select yes or no- acquires data until S/N value between ppm indicated is > specified value
Acquisition time (at)	Set from "Pulse Sequence" panel, controls the digital resolution (Hz/point, 1/at)

NOTE

You can type specific values for these parameters manually in the appropriate boxes on the "Acquisition" panel.

2 Standard 1D - Std 1D

Processing

Processing

A typical processing weighting (apodization) choice that provides S/N enhancement (at the expense of resolution) for a 1D carbon spectrum is line broadening, with an lb setting from $\sim 0.5 - 1$ Hz.

Tips, tricks, and next steps

- The acquisition time, which controls the digital resolution (Hz/point, which is equal to 1/at), is set on the "Acquisition" panel of the "Acquire" tab. Because carbon spectra are often acquired with large spectral widths, the default digital resolution (set from the chosen spectral width) may be insufficient to see small coupling; consider lengthening the acquisition time and/or narrowing the spectral width when acquiring coupled carbon spectra.
- Receiver gain (gain) is usually set to a high value (\geq 30), unless the sample is highly concentrated or ¹³C-labelled.

• The standard proton-decoupled CARBONecho spectrum is produced by turning on the decoupling during the pulse and acquisition. It is also standard practice to leave the decoupler on during the preacquisition delay (d1), which provides an NOE enhancement to the carbon signals from attached protons. When more protons are attached to a carbon, the enhancement is larger. For example, methyl signals appear larger than quaternary carbon signals. Turn off the NOE enhancement if integration is desired.

References:

M. A. Smith, H. Hu, A. J. Shaka, J. Magn. Reson. 151 (2001) 269-283. (BIP Pulses)

2 Standard 1D - Std 1D BilevelDec

BilevelDec

General description and usage

Description:

Used to acquire a carbon-decoupled 1D-¹H dataset.

Usage:

This experiment is designed to acquire a 1D proton spectrum with heteronuclear decoupling. The bilevel style decoupling helps remove cyclic decoupling sidebands associated with large ¹H-X couplings by varying the length of the higher power decoupling at the beginning of the acquisition. These sidebands are often a problem when decoupling a nucleus of high abundance like ³¹P. This experiment is also used for uniformly ¹³C-labelled samples, which can have complex, difficult to interpret 1D PROTON spectra from ¹³C-¹H coupling.

Key parameters

Parameter	Description
Solvent (solvent)	Set from "Start" tab/"Standard" panel
Spectral Width(sw)	Type in specific ppm values
Number of scans(nt)	Select typical choices from pull down menu*
Relaxation Delay (d1)	Select typical choices from pull down menu*-controls the delay between scans
Pulse Angle	Select typical choices from pull down menu*-controls the tip angle for the pulse
Bilevel Decoupling ON/OFF	Check box to turn decoupling on/off
Decoupling bandwidth	Use to the desired bandwidth for decoupling- larger bandwidth means more power
Decoupler position	Use to set carbon decoupling frequency in ppm (50 ppm typically the center)

NOTE

You can type specific values for these parameters manually in the appropriate boxes on the "Acquisition" panel.

Processing

The processing is typically the same as the processing used for standard PROTON spectrum, except manual phasing may be required due to antiphase/negative peaks at the decoupling frequency. A typical processing weighting (apodization) choice that provides S/N enhancement (at the expense of resolution) for a 1D proton spectrum is line broadening, with an lb setting from ~0.5 - 1 Hz. A suggested optimal value is line broadening equal to the unfiltered peak linewidth at half-height. Other types of weighting functions are available under the "Process" tab on the "Weighting" panel.

Tips, tricks, and next steps

- The appropriate receiver gain (gain) is most easily set by making sure that the Autogain option is checked on the right side of the "Acquire" tab. The software optimizes the gain setting before data collection.
- If the ¹³C-labelling is localized to a portion of the molecule, for example an aromatic ring, setting the decoupling position to the center of the labeled carbon region and narrowing the decoupling bandwidth can minimize the decoupling power.
- With probes of good ¹³C efficiency (shorter 90° pulse lengths), BiLevelDEC can be used to acquire ¹³C decoupled PROTON spectra with ¹H acquisition times of normal length and full band ¹³C decoupling, provided a sufficiently long d1 relaxation delay is set, such at 10-20s. This experiment can be useful for quantitative NMR or trace analysis where it is desirable to move the ¹³C satellites under the main ¹H peak resonance.

References:

E. Kupce, R. Freeman, G. Wider and K. Wütrich, J. Magn. Reson, Ser A. 122 (1996) 81-84. (Bilevel Decoupling)

Standard 1D - Std 1D2Tips, tricks, and next steps

2 Standard 1D - Std 1D

Tips, tricks, and next steps

Agilent VnmrJ 4 Experiment Guide

3

Homonuclear 2D - (HH)Homo2D

(HH)Homo2D Tab 90 gCOSY 92 gDQCOSY 100 TOCSY 108 zTOCSY 112 ROESY 116 ROESYAD 120 NOESY 124 zCOSY 128

3 Homonuclear 2D - (HH)Homo2D (HH)Homo2D Tab

(HH)Homo2D Tab

This tab of the Experiment Selector includes the set of 2D experiments available for proton homonuclear correlations, including both J-coupling and through-space correlation experiments. The J-coupling experiments fall into two families, the COSY family that primarily displays connectivities from two- and three-bond couplings and the TOCSY family, which can show correlations among an entire spin system. The z-filtered versions of the experiments are also available as well as gradient enhanced coherence selection for the COSY experiments. The gradient enhanced version of the experiment experiences better artifact suppression at the expense of some loss of sensitivity (factor of ~ 1.4). In experiments involving z-magnetization (zTOCSY, zCOSY, NOESY) zero-quantum suppression is implemented and switched on by default. The through-space correlation experiments consist of both NOESY and ROESY with an additional option of an adiabatic spinlock for the ROESY. The adiabatic spinlock is preferable as the power is lower, permitting longer mixing times for the ROESYAD.

These experiments are considered essential data for small molecule structure elucidation following the 1D PROTON experiment. With reasonable amounts of material, the J-coupling experiments can often be acquired in 5 minutes or less. Because these experiments are proton-proton correlations, they are the most sensitive and have the best chance of providing additional structural data beyond the PROTON spectrum if the sample is limited.

Homonuclear 2D - (HH)Homo2D 3 (HH)Homo2D Tab

Experiment Selector	₽ ×
HF_Expts (HC)Crisis2	Hadamard
Sel2D Dosy 2	D Dosy 3D
Jn(CH)corr (H)Sel1	D (HC)HetToxys
Service (HH)Homo2D	JSpectra J1(CH)corr
Common Std 1D (C	C)corr System Studies
gCOSY	COSY
gDQCOSY	DQCOSY
ΤΟϹϚϒ	zTOCSY
ROESY	ROESYAD
NOESY	zCOSY

3 Homonuclear 2D - (HH)Homo2D gCOSY

gCOSY

General description and usage

Description:

Two-Dimensional J-correlation spectroscopy with gradient coherence selection.

Usage:

This experiment produces a 2-dimensional, absolute-value, spectrum with peaks along the diagonal corresponding to the peaks in a 1D PROTON spectrum and crosspeaks between protons with nonzero couplings, typically 2 - 4 chemical bonds apart. This experiment is useful for assignment, particularly when some of the peak identities are known- the others can then be deduced from the crosspeaks observed. For structure elucidation, the protonated molecular fragments can be mapped out from the couplings. The gCOSY is a highly robust experiment and, along with TOCSY/zTOCSY, is among the most sensitive of the 2Ds, making it a popular choice for the organic chemistry NMR lab. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Key parameters

Parameter	Description
Spectral Width (sw)	Set from previously acquired PROTON*
Acquisition time (at)	Set from "Pulse Sequence" panel, controls the resolution in F2, default 0.15s
Scans per t1 increment (nt)	Select typical choices from pull down menu* no required minimum for the gCOSY
t1 Increments (ni)	Select typical choices from pull down menu*-controls the resolution in F1 (minimum ~64)
COSY-beta	Set from "Pulse Sequence" panel pull-down, choose COSY-45, 60, 90, or 135
Symmetrize	Check box for processing option to symmetrize along the diagonal
Steady State (ss)	Set from "Pulse Sequence" panel, turn on/off gradient cleanup between scans

NOTE

You can type specific values for these parameters manually in the appropriate boxes on the "Acquisition" panel.

Processing

Automated processing is turned on by default, and the parameters are set to reasonable values, such that the resulting data after the acquisition usually requires no further adjustment. The "Process" tab/"Basic" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (1k x 1k is the default), as well as a check box to turn on/off linear prediction and a pull-down menu to control the extent of linear prediction (default is 2*ni). Menus to change the weighting functions quickly in F2/F1 are also present (defaults are squared sinebells). More processing details are found under some of the other "Process" panels, such as the "Default", "Weighting", and "More 2D" panels.

Tips, tricks, and next steps

- Spectral width (sw) and receiver gain (gain) settings transfer from a PROTON if the gCOSY is set up from this experiment.
- The gCOSY is a high sensitivity experiment and data can often be collected using one scan per increment with reasonably concentrated samples. Consider increasing the number of increments (ni) and turning off linear prediction in f1 to increase the quality of the data for such samples.
- The COSY experiment has a sensitivity advantage (factor of ~1.4) over the gCOSY, but can produce potentially less clean spectra (due to t1 noise from strong signals such as t-butyl) than gCOSY. The COSY also requires a multiple of four scans per increment, as opposed to the gCOSY, which can be run with one scan per increment.
- The default number of steady state scans (ss) that are acquired before data acquisition to establish sample equilibrium is 32, which works for most samples. This value is changed on the "Acquisition" panel of the "Acquire" tab if necessary.

- The default value for the tip angle of the second pulse is set to 90o, producing a gCOSY-90. To acquire a gCOSY-45, go to the "Pulse Sequence" dialog box under the "Acquire" tab and select 45 degrees from the pull-down box for COSY-beta. The gCOSY-45 has less intense diagonal peaks than the gCOSY-90, making close chemical shift correlations easier to see at a loss of sensitivity. A 60° pulse can provide a compromise between the two.
- The d2 delay (default value 20msec) can be increased via the Pulse Sequence panel to emphasize crosspeaks originating from small couplings.
- The default parameters use a Grad-90-Grad steady state between scans, which helps cleanup unrelaxed magnetization. This can result in much cleaner spectra, especially when using shorter acquisition times (at) and relaxation delays (d1) (defaults are 0.15s and 1s, respectively).
- Spectral symmetrization can appear to provide an easy way of cleaning up artifacts such as t1 noise (noise along the F1 axis often observed at the chemical shift of sharp, intense peaks). However, it can produce spurious crosspeaks that appear real. When in doubt about the validity of a cross peak, examine the unsymmetrized spectrum as well.
- If the concentration is not very low, a gDQCOSY can be considered instead of the gCOSY. It typically leads to cleaner spectra (due to suppression of singlet diagonal peaks, such as t-butyl resonances) and yields higher resolution spectra.
- Complex molecules with many overlapping spin systems can be difficult to assign from a gCOSY. Consider using a zTOCSY in lieu of, or in conjunction with the gCOSY data as the zTOCSY experiment is better at identifying the entire spin system of protons.

References:

W. P. Aue, J. Karhan, R. R. Ernst, J. Chem. Phys. 64 (1976) 4226-4227. (COSY)

R. E. Hurd, J. Magn. Reson. 87 (1990) 422-428. (Gradient based Coherence Selection)

3 Homonuclear 2D - (HH)Homo2D COSY

COSY

General description and usage

Description:

Two-Dimensional J-correlation spectroscopy.

Usage:

This experiment produces a 2-dimensional, absolute-value, spectrum with peaks along the diagonal corresponding to the peaks in a 1D PROTON and crosspeaks between protons with nonzero couplings, typically 2 - 4 chemical bonds apart. This experiment is useful for assignment, particularly when some of the peak identities are known- the others can then be deduced from the crosspeaks observed. For structure elucidation, the protonated molecular fragments can be mapped out from the couplings. The COSY is a highly robust experiment and, along with TOCSY, is among the most sensitive of the 2Ds, making it a popular choice for the organic chemistry NMR lab. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Key parameters

Parameters	Description
Spectral Width (sw)	Set from previously acquired PROTON*
Acquisition time (at)	Set from "Pulse Sequence" panel, controls the resolution in F2, default 0.15s
Scans per t1 increment (nt)	Select typical choices from pull down menu*
t1 Increments (ni)	Select typical choices from pull down menu*- controls the resolution in F1 (minimum ~64)
COSY-beta	Set from "Pulse Sequence" panel pull-down, choose COSY-45, 60, 90, or 135
Symmetrize	Processing option to symmetrize along the diagonal
Steady State (ss)	Set from "Pulse Sequence" panel, turn on/off gradient cleanup between scans

NOTE

You can type specific values for these parameters manually in the appropriate boxes on the "Acquisition" panel.

Start Acquire	Process Show Time Acquire Stop Sequence	e Arrays Seq. Help	# ×
Defaults Acquisition Pulse Sequence PRESAT WET Channels Flags Future Actions Overview	Experiment: COSY Solvent: cdcl3 Acquisition Options Scans per t1 increment 11 increments 128 Autoprocessing: Symmetrize along diagonal after transform	H1-H1 Correlation [Decoupler: C13] Receiver Gain (dB): 30	

3 Homonuclear 2D - (HH)Homo2D Processing

Processing

Automated processing is turned on by default, and the parameters are set to reasonable values, such that the resulting data after the acquisition usually requires no further adjustment. The "Process" tab/"Basic" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (1k x 1k is the default), as well as a check box to turn on/off linear prediction and a pull-down to control the extent of linear prediction (default is 2*ni). Menus to quickly change the weighting functions in F2/F1 are also present (defaults are squared sinebells). More processing details are found under some of the other "Process" panels, such as the "Default", "Weighting", and "More 2D" panels.

Tips, tricks, and next steps

- Spectral width (sw) and receiver gain (gain) settings transfer from a PROTON if the COSY is set up from this experiment.
- The COSY experiment has a sensitivity advantage (factor of ~1.4) over the gCOSY but can produce potentially less clean spectra (due to t1 noise from strong signals such as t-butyl) than gCOSY. The COSY also requires a multiple of four scans per increment, as opposed to the gCOSY, which can be run with one scan per increment.
- The default number of "steady state" or "dummy scans" that are acquired before data acquisition to establish sample equilibrium is 32, which works for most samples. This value is changed on the "Acquisition" panel of the "Acquire" tab if necessary.
- The default value for the tip angle of the second pulse is set to 90°, producing a COSY-90. To acquire a COSY-45, go to the "Pulse Sequence" dialog box under the "Acquire" tab and select 45 degrees from the pull-down box for COSY-beta. The COSY-45 has less intense diagonal peaks than the COSY-90, making close chemical shift correlations easier to see at a loss of sensitivity. A 60° pulse can provide a compromise between the two.
- The d2 delay (default value 20msec) can be increased via the Pulse Sequence panel to emphasize crosspeaks originating from small couplings.

- The default parameters use a Grad-90-Grad steady state between scans, which helps cleanup unrelaxed magnetization. This can result in much cleaner spectra, especially when using shorter acquisition times, and d1 relaxation delays (defaults are 0.15s and 1s, respectively).
- Spectral symmetrization can appear to provide an easy way of cleaning up artifacts such as t1 noise (noise along the F1 axis often observed at the chemical shift of sharp, intense peaks). However it can produce spurious crosspeaks that appear real. When in doubt about the validity of a cross peak, examine the unsymmetrized spectrum as well.
- Complex molecules with many overlapping spin systems can be difficult to assign from a COSY- consider using a zTOCSY instead of, or in conjunction with the COSY data as the zTOCSY experiment is better at identifying the entire spin system of protons together.

References:

J. Jeener, Ampere International Summer School, Basko Polje, Yugoslavia 1971. (Introduction to 2D)

W. P. Aue, J. Karhan, R. R. Ernst, J. Chem. Phys. 64 (1976) 4226-4227. (COSY)

D. L. Turner, Prog. NMR. Spectrosc. 17 (1985) 281-358. (2D NMR)

3 Homonuclear 2D - (HH)Homo2D gDQCOSY

gDQCOSY

General description and usage

Description:

Two-Dimensional double-quantum filtered J-correlation spectroscopy with gradient coherence selection.

Usage:

This experiment produces a 2-dimensional spectrum with peaks along the diagonal corresponding to the peaks in a 1D PROTON and crosspeaks between protons with nonzero couplings, typically 2 - 4 chemical bonds apart. This experiment is useful for assignment, particularly when some of the peak identities are known- the others can then be deduced from the crosspeaks observed. For structure elucidation, the protonated molecular fragments can be mapped out from the couplings. The advantage of the gDQCOSY over the gCOSY is that peaks with no double-quantum transitions (for example, singlets) are suppressed, producing cleaner spectra. The experiment is also phase sensitive, resulting in better peak

shapes. Calibrate the 90° pulse width accurately for this experiment. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Key parameters

Parameter	Description
Spectral Width (sw)	Set from previously acquired PROTON*
Acquisition time (at)	Set from "Pulse Sequence" panel, controls the resolution in F2, default 0.15s
Scans per t1 increment (nt)	Select typical choices from pull down menu*- no required minimum for the gDQCOSY
t1 Increments (ni)	Select typical choices from pull down menu*- controls the resolution in F1 (minimum ~64)
Steady State (ss)	Set from "Pulse Sequence" panel, turn on/off gradient cleanup between scans

NOTE

You can type specific values for these parameters manually in the appropriate boxes on the "Acquisition" panel.

3 Homonuclear 2D - (HH)Homo2D Processing

Processing

Automated processing is turned on by default, and the parameters are set to reasonable values, such that the resulting data after the acquisition usually require no further adjustment. The "Process" tab/"Basic" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (1k x 1k is the default), as well as a check box to turn on/off linear prediction and a pull-down to control the extent of linear prediction (default is 2*ni). Menus to quickly change the weighting functions in F2/F1 are also present (defaults are shifted sinebells). More processing details are found under some of the other "Process" panels, such as the "Default", "Weighting", and "More 2D" panels.

Tips, tricks, and next steps

- Spectral width (sw) and receiver gain (gain) settings transfer from a PROTON if the gDQCOSY is set up from this experiment.
- The main advantage of the gDQCOSY versus the gCOSY is better resolution (phase sensitive versus absolute value experiment) and the absence of singlets that display no couplings. For instance, t-butyl signals, which can be a large source of t1 noise because of their intensity, are suppressed in a gDQCOSY.
- The DQCOSY experiment has a sensitivity advantage (factor of ~1.4) over the gDQCOSY but can produce potentially less clean spectra (due to t1 noise from strong signals) than gDQCOSY. The DQCOSY also requires a multiple of four scans per increment, as opposed to the gDQCOSY, which can be run with one scan per increment.
- The default number of "steady state" or "dummy scans" that are acquired before data acquisition to establish sample equilibrium is 32, which works for most samples. This value is changed on the "Acquisition" panel of the "Acquire" tab if necessary.
- The 90° pulse width is typically calibrated reasonably well for best results from the gDQCOSY experiment. See the PROTON experiment in Chapter 2 to calibrate the pulse.

- Because the J-couplings evolve as an echo in gDQCOSY, the crosspeaks arising from small couplings may not appear until the number of completed increments is sufficient. In general, it is useful to set ni to a larger value than is the case in an experiment such as gCOSY.
- The default parameters use a Grad-90-Grad steady state between scans, which helps cleanup unrelaxed magnetization. This can result in much cleaner spectra, especially when using shorter acquisition times, and d1 relaxation delays (defaults are 0.15s and 1s, respectively).
- The gDQCOSY experiment can be used to measure coupling constants of overlapped multiplets as the crosspeaks contain the full multiplet structure. If used for coupling constant measurement, run this experiment with many increments (ni typically to 400 or higher). The zCOSY is a better alternative for coupling constant measurements than the gDQCOSY.
- Complex molecules with many overlapping spin systems can be difficult to assign from a gDQCOSY- consider using a zTOCSY instead of, or in conjunction with the gDQCOSY data as the zTOCSY experiment is better at identifying the entire spin system of protons.

References:

W. P. Aue, J. Karhan, R. R. Ernst, J. Chem. Phys. 64 (1976) 4226-4227. (COSY)

U. Piantini, O. W. Sorensen, R. R. Ernst, J. Am. Chem. Soc. 104 (1982) 6800-6801. (Double Quantum Filter)

R. E. Hurd, J. Magn. Reson. 87 (1990) 422-428. (Gradient based Coherence Selection)

3 Homonuclear 2D - (HH)Homo2D DQCOSY

DOCOSY

General description and usage

Description:

Two-Dimensional double-quantum filtered J-correlation spectroscopy.

Usage:

This experiment produces a 2-dimensional spectrum with peaks along the diagonal corresponding to the peaks in a 1D PROTON and crosspeaks between protons with 2- (geminal) or 3- (vicinal)-bond couplings. This experiment is useful for assignment, particularly when some of the peak identities are known- the others can then be deduced from the crosspeaks observed. For structure elucidation, the protonated molecular fragments can be mapped out from the couplings. The advantage of the DQCOSY over the COSY is that peaks with no double-quantum transitions (for example, singlets) are suppressed, producing cleaner spectra. The experiment is also phase sensitive, resulting in better peak shapes. The

 $90^{\rm o}$ pulse width is typically calibrated accurately for this experiment. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Key parameters

Parameter	Description
Spectral Width (sw)	Set from previously acquired PROTON*
Acquisition time (at)	Set from "Pulse Sequence" panel, controls the resolution in F2, default 0.15s
Scans per t1 increment (nt)	Select typical choices from pull down menu*
t1 Increments (ni)	Select typical choices from pull down menu*- controls the resolution in F1 (minimum ~64)
Steady State (ss)	Set from "Pulse Sequence" panel, turn on/off gradient cleanup between scans

NOTE

You can type specific values for these parameters manually in the appropriate boxes on the "Acquisition" panel.

Start Acquire P	Process Show Time Acquire Stop	Sequence Arrays Seq. Help	\$
Defaults Acquisition Pulse Sequence PRESAT WET Channels Flags Fluture Actions Overview	Experiment: DQCOSY Solvent: cdcl3 Acquisition Options Scans per 11 Increment 8 11 Increments 200	H1-H1 Correlation [Decoupler: C13]	

3 Homonuclear 2D - (HH)Homo2D Processing

Processing

Automated processing is turned on by default, and the parameters are set to reasonable values, such that the resulting data after the acquisition usually require no further adjustment. The "Process" tab/"Basic" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (1k x 1k is the default), as well as a check box to turn on/off linear prediction and a pull-down to control the extent of linear prediction (default is 2*ni). Menus to quickly change the weighting functions in F2/F1 are also present (defaults are shifted sinebells). More processing details are found under some of the other "Process" panels, such as the "Default", "Weighting", and "More 2D" panels.

Tips, tricks, and next steps

- Spectral width (sw) and receiver gain (gain)-settings transfer from a PROTON if the DQCOSY is set up from this experiment.
- The main advantage of the DQCOSY versus the COSY is better resolution (phase sensitive versus absolute value experiment) and the absence of singlets that display no couplings. For instance, t-butyl signals, which can be a large source of t1 noise because of their intensity, are suppressed in a DQCOSY.
- The DQCOSY experiment has a sensitivity advantage (factor of ~1.4) over the gDQCOSY but can produce potentially less clean spectra (due to t1 noise from strong signals) than gDQCOSY. The DQCOSY also requires a multiple of four scans per increment, as opposed to the gDQCOSY, which can be run with one scan per increment.
- The default number of "steady state" or "dummy scans" that are acquired before data acquisition to establish sample equilibrium is 32, which works for most samples. This value is changed on the "Acquisition" panel of the "Acquire" tab if necessary.
- Calibrate the 90° pulse width accurately for best results from the DQCOSY experiment. See the PROTON experiment in Chapter 2 to calibrate the pulse.

- Because the J-couplings evolve as an echo in DQCOSY, the crosspeaks arising from small couplings may not appear until the number of completed increments is sufficient. In general, it is useful to set ni to a larger value than is the case in an experiment such as gCOSY.
- The default parameters use a Grad-90-Grad steady state between scans, which helps cleanup unrelaxed magnetization. This can result in much cleaner spectra, especially when using shorter acquisition times, and d1 relaxation delays (defaults are 0.15s and 1s, respectively).
- The DQCOSY experiment can be used to measure coupling constants of overlapped multiplets as the crosspeaks contain the full multiplet structure. If used for coupling constant measurement, run this experiment with many increments (ni typically to 400 or higher).
- Complex molecules with many overlapping spin systems can be difficult to assign from a DQCOSY- consider using a zTOCSY instead of, or in conjunction with the DQCOSY data as the zTOCSY experiment is better at identifying the entire spin system of protons.

References:

W. P. Aue, J. Karhan, R. R. Ernst, J. Chem. Phys. 64 (1976) 4226-4227. (COSY)

U. Piantini, O. W. Sorensen, R. R. Ernst, J. Am. Chem. Soc. 104 (1982) 6800-6801. (Double Quantum Filter)

3 Homonuclear 2D - (HH)Homo2D TOCSY

TOCSY

General description and usage

Description:

Two dimensional total J-correlation spectroscopy for scalar coupled spin systems.

Usage:

This experiment produces a 2-dimensional spectrum with peaks along the diagonal corresponding to the peaks in a 1D PROTON and crosspeaks potentially between all protons in a scalar coupled spin system. This experiment is useful for assignment, particularly for complex molecules with multiple overlapping spin systems, for example, peptides. For structure elucidation, the molecular fragments containing individual spin systems can be mapped out from the correlations. The TOCSY is a highly robust experiment and, along with gCOSY, is among the most sensitive of the 2Ds, making it a popular choice for the organic chemistry NMR lab. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Key parameters

Parameter	Description		
Spectral Width (sw)	Set from previously acquired PROTON*		
Acquisition time (at)	Set from "Pulse Sequence" panel, controls the resolution in F2, default 0.15s		
Scans per t1 increment (nt)	Select typical choices from pull down menu*		
t1 Increments (ni)	Select typical choices from pull down menu*- controls the resolution in F1 (minimum ~64)		
Spinlock Pattern	Pull-down menu on the "Pulse Sequence" panel- MLEV17 or DIPSI2 work well for small molecules; clean MLEV17 or DIPISI2 are good choices for large molecules		
Spinlock Duration (mixT)	Select from pull down menu- 80ms work best for large spin systems*		
Steady State (ss)	Set from "Pulse Sequence" panel, turn on/off gradient cleanup between scans		

NOTE

You can type specific values for these parameters manually in the appropriate boxes on the "Acquisition" or "Pulse Sequence" panels.

Defaults Acquisition	Experiment: TOCSY Solvent: c	dcl3	H1-H1 Correlation	[Decoupler:	C13]
Pulse Sequence PRESAT WET Channels Flags Fluture Actions Overview	Acquisition Options Scans per 11 Increment 2 11 Increments 24 Spinlock Pattern m Spinlock Duration 8	00 ¥ lev17 0 ¥ ms	Receiver	Gain (dB):	30

3 Homonuclear 2D - (HH)Homo2D Processing

Processing

Automated processing is turned on by default, and the parameters are set to reasonable values, such that the resulting data after the acquisition usually require no further adjustment. The "Process" tab/"Basic" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (1k x 1k is the default), as well as a check box to turn on/off linear prediction and a pull-down to control the extent of linear prediction (default is 2*ni). Menus to quickly change the weighting functions in F2/F1 are also present (defaults are Gaussians). More processing details are found under some of the other "Process" panels, such as the "Default", "Weighting", and "More 2D" panels.

Tips, tricks, and next steps

- Spectral width (sw) and receiver gain (gain) settings transfer from a PROTON if the TOCSY is set up from this experiment.
- The TOCSY is a high sensitivity experiment and data can often be collected using one scan per increment with reasonably concentrated samples. Consider increasing the number of increments (ni) to increase the quality of the data for such samples.
- The default number of "steady state" or "dummy scans" that are acquired before data acquisition to establish sample equilibrium is 32, which works for most samples. This value is changed on the "Acquisition" panel of the "Acquire" tab if necessary.
- The spinlock time (in addition to the magnitude of the coupling constants) ultimately controls how far along the spin system the correlations extend. Use spinlock durations exceeding 150ms with caution, as this can result in sample heating. The efficiency of the TOCSY transfer is directly proportional to the size of the coupling constants between the pairs of protons. To show primarily vicinal and geminal couplings (such as for a COSY), select a shorter spinlock time, for example, 30ms or less. Such short spinlock TOCSY is a good alternative to gCOSY as TOCSY gives pure absorptive lineshape and potentially improved resolution.
- The MLEV17 and DIPSI2 spinlock patterns are good choices for small molecules, and the DIPSI3 and clean MLEV are typically used for larger molecules.
- The default parameters use a Grad-90-Grad steady state between scans, which helps cleanup unrelaxed magnetization. This can result in much cleaner spectra, especially when using shorter acquisition times, and d1 relaxation delays (defaults are 0.15s and 1s, respectively).
- The zTOCSY experiment contains a zero-quantum filter and usually results in cleaner spectra than the TOCSY experiment. Only zTOCSY experiment can be combined with zero-quantum filters.

References:

A. Bax, D. G. Davis, J. Magn. Reson. 63 (1985) 355-360. (TOCSY with MLEV17)

C. Griesinger, G. Otting, K. Wuethrich, R. R. Ernst, J. Am. Chem. Soc. 110 (1988) 7870-7872. (TOCSY with clean MLEV17)

J. Cavanaugh, M. Rance, J. Magn. Reson. 96 (1992) 670-678. (TOCSY with DIPSI2)

3 Homonuclear 2D - (HH)Homo2D zTOCSY

zTOCSY

General description and usage

Description:

Two Dimensional total J-correlation spectroscopy for scalar coupled spin systems with a zero-quantum filter for artifact suppression.

Usage:

This experiment produces a 2-dimensional spectrum with peaks along the diagonal corresponding to the peaks in a 1D PROTON and crosspeaks potentially between all protons in a scalar coupled spin system. This experiment is useful for assignment, particularly for complex molecules with multiple overlapping spin systems, for example, peptides. For structure elucidation, the molecular fragments containing individual spin systems can be mapped out from the correlations. The zTOCSY is a highly robust experiment and, along with gCOSY, is among the most sensitive of the 2Ds, making it a popular choice for the organic chemistry NMR lab. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Key parameters

Parameter	Description
Spectral Width (sw)	Set from previously acquired PROTON*
Acquisition time (at)	Set from "Pulse Sequence" panel, controls the resolution in F2, default 0.15s
Scans per t1 increment (nt)	Select typical choices from pull down menu*
t1 Increments (ni)	Select typical choices from pull down menu*- controls the resolution in F1 (minimum ~64)
Spinlock Pattern	Pull-down menu on the "Pulse Sequence" panel- DIPSI2 works well for small molecules, DIPSI3 is a good choice for large molecules
Spinlock Duration (mixT)	Select from pull down menu- 80ms work best for large spin systems*
Steady State (ss)	Set from "Pulse Sequence" panel, turn on/off gradient cleanup between scans

NOTE

You can type specific values for these parameters manually in the appropriate boxes on the "Acquisition" or "Pulse Sequence" panels.

3 Homonuclear 2D - (HH)Homo2D Processing

Processing

Automated processing is turned on by default, and the parameters are set to reasonable values, such that the resulting data after the acquisition usually require no further adjustment. The "Process" tab/"Basic" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (1k x 1k is the default), as well as a check box to turn on/off linear prediction and a pull-down to control the extent of linear prediction (default is 2*ni). Menus to quickly change the weighting functions in F2/F1 are also present (defaults are Gaussians). More processing details are found under some of the other "Process" panels, such as the "Default", "Weighting", and "More 2D" panels.

Tips, tricks, and next steps

- Spectral width (sw) and receiver gain (gain) settings transfer from a PROTON if the zTOCSY is set up from this experiment.
- The TOCSY is a high sensitivity experiment and data can often be collected using one scan per increment with reasonably concentrated samples. Consider increasing the number of increments (ni) to increase the quality of the data for such samples
- The default number of "steady state" or "dummy scans" that are acquired before data acquisition to establish sample equilibrium is 32, which works for most samples. This value is changed on the "Acquisition" panel of the "Acquire" tab if necessary.
- The spinlock time (in addition to the magnitude of the coupling constants) ultimately controls how far along the spin system the correlations extend. Use spinlock durations exceeding 150ms with caution, as this can result in sample heating. To show primarily vicinal and geminal couplings (such as for a COSY), select a shorter spinlock time, for example, 30ms or less Such short spinlock zTOCSY is a good alternative to gCOSY as zTOCSY gives pure absorptive lineshape and potentially improved resolution.
- The DIPSI2 spinlock pattern is a good choice for small molecules, and the DIPSI3 is typically used for larger molecules

- The default parameters use a Grad-90-Grad steady state between scans, which helps cleanup unrelaxed magnetization. This can result in much cleaner spectra, especially when using shorter acquisition times, and d1 relaxation delays (defaults are 0.15s and 1s, respectively).
- The zTOCSY experiment contains a zero-quantum filter and usually results in cleaner spectra than the TOCSY experiment.

References:

J. Cavanaugh, M. Rance, J. Magn. Reson. 96 (1992) 670-678. (TOCSY with DIPSI2)

M. J. Trippleton, J. Keeler, Angew. Chem. Int. Ed. 42 (2003) 3938-3941. (Zero Quantum Suppression) 3 Homonuclear 2D - (HH)Homo2D ROESY

ROESY

General description and usage

Description:

Two-Dimensional through-space correlation spectroscopy in the rotating frame.

Usage: This experiment produces a 2-dimensional spectrum with peaks along the diagonal corresponding to the peaks in a 1D PROTON and crosspeaks between protons that are close in space (typically <4 Å). As such the ROESY experiment is often used to help determine stereochemistry for rigid ring systems or to confirm attachments between proximal, but noncoupled portions of a molecule. The ROESY is the experiment of choice for intermediate-sized molecules (typically between 800-1000 MW) where the NOE can be zero. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Key parameters

Parameter	Description
Spectral Width (sw)	Set from previously acquired PROTON*
Acquisition time (at)	Set from "Pulse Sequence" panel, controls the resolution in F2, default 0.15s
Scans per t1 increment (nt)	Select typical choices from pull down menu*
t1 Increments (ni)	Select typical choices from pull down menu*- controls the resolution in F1 (minimum ~64)
Relaxation time (d1)	Select typical choices from pull down menu*-controls the delay between scans
Spinlock Pattern	Pull-down menu on "Pulse Sequence" panel- choose troesy (recommended) or cw
Spinlock Mixing time	Select from pull down menu- 200ms works well for most small molecules* DO NOT EXCEED 500ms
Steady State (ss)	Set from "Pulse Sequence" panel, turn on/off gradient cleanup between scans

NOTE

You can type specific values for these parameters manually in the appropriate boxes on the "Acquisition" or "Pulse Sequence" panels.

3 Homonuclear 2D - (HH)Homo2D Processing

Processing

Automated processing is turned on by default, and the parameters are set to reasonable values, such that the resulting data after the acquisition usually require no further adjustment, except for minor manual phasing changes that can be required as the ROE peaks are negative. The "Process" tab/"Basic" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (1k x 1k is the default), as well as a check box to turn on/off linear prediction and a pull-down to control the extent of linear prediction (default is 2*ni). Menus to quickly change the weighting functions in F2/F1 are also present (defaults are Gaussians). More processing details are found under some of the other "Process" panels, such as the "Default", "Weighting", and "More 2D" panels.

Tips, tricks, and next steps

- Spectral width (sw) and receiver gain (gain) settings transfer from a PROTON if the ROESY is set up from this experiment.
- The default number of "steady state" or "dummy scans" that are acquired before data acquisition to establish sample equilibrium is 32, which works for most samples. This value is changed on the "Acquisition" panel of the "Acquire" tab if necessary.
- The default parameters use a Grad-90-Grad steady state between scans, which helps cleanup unrelaxed magnetization. This can result in much cleaner spectra, especially when using shorter acquisition times, and d1 relaxation delays (defaults are 0.15s and 1s, respectively).
- A mixing time of 200ms is a good starting place for most small molecules. Weak ROE interactions can require longer mixing times (up to \sim 500ms), but keep the mixing time shorter as longer spinlocks can result in sample heating. It is a good idea not to exceed a 500ms spinlock.

- Because the mixing time for the ROESY is limited, weaker correlations may not be observable. ROESY is the experiment of choice over NOESY for medium-sized molecules (MW ~800-1000 depending on the molecule and spectrometer frequency), as they can exhibit zero or very small NOEs. Consider running NOESY experiments (which can be run with longer mixing times) by (i) choosing a more viscous solvent such as d_6 -DMSO or d_6 -DMSO with ~10 20% D₂O (which results in slower molecular tumbling and hence generates a positive NOE enhancement like larger molecules), (ii) selecting a lower temperature (if the solvent allows it), or (iii) running the experiment on a spectrometer with higher field strength (if available).
- Crosspeaks in the ROESY spectrum that have the same phase as the diagonal can arise from chemical exchange during the ROE mixing time or TOCSY-type correlations (couplings). The exchange crosspeaks provide information about interconverting molecular conformations and can be used to recognize such molecular dynamic processes.
- The ROESYAD experiment uses adiabatic pulses for the spinlock, which may be preferred over the ROESY.

References:

A. A. Bothner-By, R. L. Stephens, J. Lee, C. D. Warren, J. W. Jeanloz, J. Am. Chem. Soc. 106 (1984) 811-813. (CAMELSPIN)

A. Bax, D. G. Davis, J. Magn. Reson. 63 (1985) 207-213. (ROESY)

T. L. Hwang, A. J. Shaka, J. Am. Chem. Soc 114 (1992) 3157-3159. (EASY-ROESY)

3 Homonuclear 2D - (HH)Homo2D ROESYAD

ROESYAD

General description and usage

Description:

Two-Dimensional through-space correlation spectroscopy in the rotating frame with adiabatic pulses for the spinlock.

Usage:

This experiment produces a 2-dimensional spectrum with peaks along the diagonal corresponding to the peaks in a 1D PROTON and crosspeaks between protons that are close in space (typically <4 Å). As such the ROESYAD experiment is often used to help determine stereochemistry for rigid ring systems or to confirm attachments between proximal, but noncoupled portions of a molecule. The ROESYAD is the experiment of choice for intermediate-sized molecules (typically between 800-1000 MW) where the NOE can be zero. Because of its lower-power adiabatic spinlock the ROESYAD is usually superior to the traditional ROESY experiment. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Key parameters

Parameter	Description
Spectral Width (sw)	Set from previously acquired PROTON*
Acquisition time (at)	Set from "Pulse Sequence" panel, controls the resolution in F2, default 0.15s
Scans per t1 increment (nt)	Select typical choices from pull down menu*
t1 Increments (ni)	Select typical choices from pull down menu*- controls the resolution in F1 (minimum ~64)
Relaxation time (d1)	Select typical choices from pull down menu*-controls the delay between scans
Spinlock Mixing time	Select from pull down menu- 200ms works well for most small molecules*
Steady State (ss)	Set from "Pulse Sequence" panel, turn on/off gradient cleanup between scans

NOTE

You can type specific values for these parameters manually in the appropriate boxes on the "Acquisition" or "Pulse Sequence" panels.

Defaults Acquisition	Experiment: ROESYAD Solvent: cdcl3 H1	-H1 Correlation [Decoupler: C13]	
Pulse Sequence PRESAT WET Channels Flags Future Actions Overview	Acquisition Options Scans per 11 increment 4 • 11 increments 128 • Relaxation time 1 • 5 Spinlock pattern mixR_ad Strength: 5177.22 Hz Spinlock Mixing time 200 • ms	Receiver Gain (dB): 30	

3 Homonuclear 2D - (HH)Homo2D Processing

Processing

Automated processing is turned on by default, and the parameters are set to reasonable values, such that the resulting data after the acquisition usually require no further adjustment, except for minor manual phasing changes that can be required, as the ROE peaks are negative. The "Process" tab/"Basic" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (1k x 1k is the default), as well as a check box to turn on/off linear prediction and a pull-down to control the extent of linear prediction (default is 2*ni). Menus to change the weighting functions in F2/F1 are also present (defaults are Gaussians). More processing details are found under some of the other "Process" panels, such as the "Default", "Weighting", and "More 2D" panels.

Tips, tricks, and next steps

- Spectral width (sw) and receiver gain (gain) settings transfer from a PROTON if the ROESYAD is set up from this experiment.
- The default parameters use a Grad-90-Grad steady state between scans, which helps cleanup unrelaxed magnetization. This can result in much cleaner spectra, especially when using shorter acquisition times, and d1 relaxation delays (defaults are 0.15s and 1s, respectively).
- A mixing time of 200ms is a good starting place for most small molecules. Weak ROE interactions can require longer mixing times (up to \sim 500ms), but keep the mixing time shorter as longer spinlocks can result in sample heating. It is a good idea not to exceed a 500ms spinlock.

- Because the mixing time for the ROESYAD is limited, weaker correlations may not be observable. ROESYAD is the experiment of choice over NOESY for medium-sized molecules (MW ~800-1000 depending on the molecule and spectrometer frequency), as they can exhibit zero or very small NOEs. Consider running NOESY experiments (which can be run with longer mixing times) by (i) choosing a more viscous solvent such as d_6 -DMSO or d_6 -DMSO with ~10 20% D_2O (which results in slower molecular tumbling and hence generates a positive NOE enhancement like larger molecules), (ii) selecting a lower temperature (if the solvent allows it), or (iii) running the experiment on a spectrometer with higher field strength (if available).
- Crosspeaks in the ROESYAD spectrum that have the same phase as the diagonal can arise from chemical exchange during the ROE mixing time or TOCSY-type correlations (couplings). The exchange crosspeaks provide information about interconverting molecular conformations and can be used to recognize such molecular dynamic processes.
- The ROESYAD experiment uses adiabatic pulses for the spinlock, which may be preferred over the ROESY.

References:

A. Bax, D. G. Davis, J. Magn. Reson. 63 (1985) 207-213. (ROESY)

T. L. Hwang, A. J. Shaka, J. Am. Chem. Soc 114 (1992) 3157-3159. (EASY-ROESY)

D. F. Hansen, L. E. Kay, J. Biomol. NMR, 37 (2007) 245-255. (Adiabatic Spinlock)

3 Homonuclear 2D - (HH)Homo2D NOESY

NOESY

General description and usage

Description:

Two-dimensional through-space correlation spectroscopy.

Usage:

This experiment produces a 2-dimensional spectrum with peaks along the diagonal corresponding to the peaks in a 1D PROTON and crosspeaks between protons that are close in space (typically <5 Å). As such the NOESY experiment is often used to help determine stereochemistry for rigid ring systems or to confirm attachments between proximal, but noncoupled portions of a molecule. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Key parameters

Parameter	Description
Spectral Width (sw)	Set from previously acquired PROTON*
Acquisition time (at)	Set from "Pulse Sequence" panel, controls the resolution in F2, default 0.15s
Scans per t1 increment (nt)	Select typical choices from pull down menu*
t1 Increments (ni)	Select typical choices from pull down menu*- controls the resolution in F1 (minimum ~64)
Relaxation time (d1)	Select typical choices from pull down menu*-controls the delay between scans
NOE Mixing time (mixT)	Select from pull down menu- 500ms works well for most small molecules*
Steady State (ss)	Set from "Pulse Sequence" panel, turn on/off gradient cleanup between scans
ZQ filter	Check box on the "Pulse Sequence" panel- zero-quantum filter for artifact suppression. Strongly recommended- default is on.

NOTE

You can type specific values for these parameters manually in the appropriate boxes on the "Acquisition" or "Pulse Sequence" panels.

3 Homonuclear 2D - (HH)Homo2D Processing

Processing

Automated processing is turned on by default, and the parameters are set to reasonable values, such that the resulting data after the acquisition usually require no further adjustment, except for minor manual phasing changes that can be required, as the NOE peaks are negative for smaller molecules. The "Process" tab/"Basic" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (1k x 1k is the default), as well as a check box to turn on/off linear prediction and a pull-down to control the extent of linear prediction (default is 2*ni). Menus to change the weighting functions in F2/F1 are also present (defaults are Gaussians). More processing details are found under some of the other "Process" panels, such as the "Default", "Weighting", and "More 2D" panels.

Tips, tricks, and next steps

- Spectral width (sw) and receiver gain (gain) settings transfer from a PROTON if the NOESY is set up from this experiment.
- The default number of "steady state" or "dummy scans" that are acquired before data acquisition to establish sample equilibrium is 32, which works for most samples. This value is changed on the "Acquisition" panel of the "Acquire" tab if necessary.
- The default parameters use a Grad-90-Grad steady state between scans, which helps cleanup unrelaxed magnetization. This can result in much cleaner spectra, especially when using shorter acquisition times, and d1 relaxation delays (defaults are 0.15s and 1s, respectively).
- A mixing time of 500ms is a good starting place for most small molecules. Very small molecules and/or weak NOE interactions can require longer mixing times (up to ~1s). Longer mixing times, however, increase the possibility of spin diffusion for larger molecules, a situation where the magnetization is transferred through space, and then through coupling, resulting in spurious correlations between protons. The NOE correlation can be confirmed by acquiring a build-up curve, whereby the mixing time is slowly increased in 50-100ms increments until the NOE intensity ceases to increase, and levels off. This time is the optimal mixing time.

- Medium-sized molecules (MW ~500 depending on the molecule and spectrometer frequency) can exhibit zero or very small NOEs. Consider acquiring a ROESYAD for these molecules. Alternatively consider, (i) choosing a more viscous solvent such as d₆-DMSO or d₆-DMSO with ~10 20% D₂O (which results in slower molecular tumbling and hence generates a positive NOE enhancement like larger molecules), (ii) selecting a lower temperature (if the solvent allows it), or (iii) running the experiment on a spectrometer with higher field strength (if available).
- Small molecules can have crosspeaks arising from chemical exchange during the NOE mixing time and have the same phase as the diagonal. The exchange crosspeaks provide information about interconverting molecular conformations and can be used to recognize such molecular dynamic processes.

References:

S. Macura, Y. Huang, D. Suter, R. R. Ernst, J. Magn. Reson. 43 (1981) 259-281. (NOESY)

M. J. Trippleton, J. Keeler, Angew. Chem. Int. Ed. 42 (2003) 3938-3941. (Zero Quantum Suppression) 3 Homonuclear 2D - (HH)Homo2D zCOSY

zCOSY

General description and usage

Description:

Two-dimensional J-correlation spectroscopy.

Usage:

This experiment produces a 2-dimensional spectrum with peaks along the diagonal corresponding to the peaks in a 1D PROTON and crosspeaks between protons with nonzero couplings, typically 2 - 4 chemical bonds apart. This experiment is mostly used to determine homonuclear coupling constants, especially smaller long-range couplings. These are typically obstructed by the complex coupling pattern in a traditional COSY but are accessible in zCOSY because of its E.COSY (Exclusive COSY) pattern. For structure elucidation, the protonated molecular fragments can be mapped out from the couplings. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Key parameters

Parameter	Description
Spectral Width (sw)	Set from previously acquired PROTON*
Acquisition time (at)	Set from "Pulse Sequence" panel, controls the resolution in F2, default 0.15s
Scans per t1 increment (nt)	Select typical choices from pull down menu*
t1 Increments (ni)	Select typical choices from pull down menu*- controls the resolution in F1 (minimum ~64)
Relaxation time (d1)	Select typical choices from pull down menu*-controls the delay between scans
Anti-z COSY	Check box to acquire an anti-z COSY (broadband proton decoupled)
Steady State (ss)	Set from "Pulse Sequence" panel, turn on/off gradient cleanup between scans

NOTE

You can type specific values for these parameters manually in the appropriate boxes on the "Acquisition" panel.

Start Acquire P	rocess Show Time Acquire Stop Se	quence Arrays Seq. Help	
Defaults Acquisition Pulse Sequence PRESAT WET Channels Flags Future Actions Overview	Experiment: zCOSY Solvent: cdcl3 Acquisition Options Scans per t1 increment 2 t1 increments 400 Relaxation time 1 s Anti-z COSY Anti-z COSY	H1-H1 Correlation [Decoupler: C13] Receiver Gain (dB): 30	

3 Homonuclear 2D - (HH)Homo2D Processing

Processing

Automated processing is turned on by default, and the parameters are set to reasonable values, such that the resulting data after the acquisition usually require no further adjustment. The "Process" tab/"Basic" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (1k x 1k is the default), as well as a check box to turn on/off linear prediction and a pull-down to control the extent of linear prediction (default is 2*ni). Menus to change the weighting functions in F2/F1 are also present (defaults are sinebells). More processing details are found under some of the other "Process" panels, such as the "Default", "Weighting", and "More 2D" panels.

Tips, tricks, and next steps

- Spectral width (sw) and receiver gain (gain) settings transfer from a PROTON if the zCOSY is set up from this experiment.
- The default number of "steady state" or "dummy scans" that are acquired before data acquisition to establish sample equilibrium is 32, which works for most samples. This value is changed on the "Acquisition" panel of the "Acquire" tab if necessary.
- The default parameters use a Grad-90-Grad steady state between scans, which helps cleanup unrelaxed magnetization. This can result in much cleaner spectra, especially when using shorter acquisition times, and d1 relaxation delays (defaults are 0.15s and 1s, respectively).
- The zCOSY is an attractive alternative to the traditional E.COSY (Exclusive COSY) experiment. zCOSY gives the same crosspeak pattern as E.COSY but can be run with single scan per increment.

References:

W. P. Aue, J. Karhan, R. R. Ernst, J. Chem. Phys. 64 (1976) 4226-4227. (COSY)

M. J. Trippleton, J. Keeler, Angew. Chem. Int. Ed. 42 (2003) 3938-3941. (Zero Quantum Suppression)

Homonuclear 2D - (HH)Homo2D 3 Tips, tricks, and next steps

3 Homonuclear 2D - (HH)Homo2D

Tips, tricks, and next steps

Agilent VnmrJ 4 Experiment Guide

4

Heteronuclear 2D 1-bond - J1(CH)corr

J1(CH)corr Tab 134 HSQCAD 136 gHSQCAD 140 HSQC 146 gHSQC 150 HMQC 154 gHMQC 158 HETCOR 162 gHETCOR 166 ASAPHMQC 170

4 Heteronuclear 2D 1-bond - J1(CH)corr J1(CH)corr Tab

J1(CH)corr Tab

This tab of the experiment selector contains 2D experiments for correlating directly attached protons to carbons. HSQC and its variants are the most commonly used family, as they typically provide the best sensitivity and peak shape. These experiments are available both with and without gradient coherence selection and adiabatic 180° carbon pulses. The gradient coherence selected versions of the experiments experience better artifact suppression at the expense of losses of sensitivity (factor of ~1.4). The adiabatic versions, HSQCAD and gHSQCAD are highly recommended, as they provide more uniform inversion profiles for a wide ¹³C spectral width, and, at the same time, compensate for any ¹³C pwx imperfections in the 180° pulses. Gradient and non-gradient HMQC experiments are also available, as well as a "fast" experiment called ASAPHMQC, which can provide a complete HX correlation spectrum with reasonable resolution in about a minute or less for samples of ~40mM concentration. Finally, there are both gradient and non-gradient versions of the ¹³C-detected HETCOR experiment. The HSQC and HETCOR experiment (and their variants) also support multiplicity-editing, where signals from the methylene group appear with opposite sign from the signals arising from methyl and methine groups. Note that although the default parameters for these experiments are setup for ¹H-¹³C correlations, other X-nuclei may be used instead of carbon provided the appropriate calibrations for these nuclei are in the probe file.

The 1-bond proton-carbon correlation is extremely useful for structure confirmation and elucidation. Peak assignments are easily made from this data; if a particular carbon assignment is known, its attached proton assignment can be derived, and vice versa. Knowledge gained from carbon chemical shift prediction can also be applied to the proton assignments with this type of data. The proton-detected experiments, HSQC and HMQC, are also considerably more sensitive than a 1D CARBON and thus permit access to carbon data for much less concentrated samples.

Heteronuclear 2D 1-bond - J1(CH)corr 4 J1(CH)corr Tab

Experiment Selector 🔍		
HF_Expts (HC)Crisis2 H	Hadamard	
Sel2D Dosy 2	D Dosy 3D	
Jn(CH)corr (H)Sel1	.D (HC)HetToxys	
Service (HH)Homo2D	JSpectra J1(CH)corr	
Common Std 1D (C	C)corr System Studies	
HSQCAD	gHSQCAD	
HSQC	gHSQC	
НМQC	gHMQC	
HETCOR	gHETCOR	
ASAPHMQC		

4 Heteronuclear 2D 1-bond - J1(CH)corr HSQCAD

HSQCAD

General description and usage

Description:

Two dimensional heteronuclear single-quantum 1-bond J-correlation spectroscopy with adiabatic 180° X-nuclei pulses.

Usage:

The HSQCAD experiment is used to acquire a 2-dimensional spectrum to correlate protons with directly attached carbons. The experiment is very useful for proton and carbon assignments, because if the proton assignment is known, the carbon assignment can be deduced directly from this data and *vice versa*. For structure elucidation, carbon chemical shifts are particularly useful as they are highly sensitive to local functional groups and can be more reliably predicted. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Key parameters

Parameter	Description
Spectral Width (sw)	Set from previously acquired PROTON*
Acquisition time (at)	Set from "Pulse Sequence" panel, controls the resolution in F2, default 0.15s
F1 Nucleus (dn)	Pull- down menu to set F1 nucleus to ¹³ C, ¹⁵ N, or other*
C13 Spectral Width (ppm)	Type in desired chemical shift range for F1 dimension
Scans per t1 increment (nt)	Select typical choices from pull down menu*
t1 Increments (ni)	Select typical choices from pull down menu*- controls the resolution in F1 (minimum ~64)
One-Bond J1xh (j1xh)	Set value for the average $^1\mathrm{J}_{\mathrm{X},\mathrm{H}^{-}}$ 146 Hz works well for many carbons
H1-C13 Multiplicity Editing	Check box to turn on/off multiplicity editing
Steady State (ss)	Set from "Pulse Sequence" panel, turn on/off gradient cleanup between scans
C12-H1 suppression	Set from "Pulse Sequence" panel- controls type of ¹² C suppression- default is TANGO-Gradient (highly recommended)

NOTE

You can type specific values for these parameters manually in the appropriate boxes on the "Acquisition" or "Pulse Sequence" panels.

4 Heteronuclear 2D 1-bond - J1(CH)corr Processing

Processing

Automated processing is turned on by default, and the parameters are set to reasonable values such that the resulting data after the acquisition usually require no further adjustment. The "Process" tab/"Basic" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (1k x 1k is the default), as well as a check box to turn on/off linear prediction and a pull-down to control the extent of linear prediction (default is 4*ni). Menus to quickly change the weighting functions in F2/F1 are also present (defaults are gaussians). More processing details can be found under some of the other "Process" panels, such as the "Default", "Weighting", and "More 2D" panels.

Tips, tricks, and next steps

- Spectral width (sw) setting transfers from a PROTON if the HSQCAD is set up from this experiment. Receiver gain (gain) is usually set to a high value (≥30), unless the sample is extremely concentrated or ¹³C-labelled.
- To measure ¹H-¹³C (or ¹H-X) coupling constants, the carbon decoupling can be turned off by entering "nnn" in the Channel 2 "Dec On/Off" entry on the "Channels" panel or alternatively by typing dm='nnn' on the command line.
- The default number of steady state scans (ss) that are acquired before data acquisition to establish sample equilibrium is 32, which works for most samples. However, higher power carbon decoupling may cause some perturbations that may necessitate more ss scans to reach equilibrium. This value is changed on the "Acquisition" panel of the "Acquire" tab if necessary.
- The default parameters use a Grad-90-Grad steady state between scans, which helps cleanup un-relaxed magnetization. This results in cleaner spectra, especially when using shorter acquisition times (at) and relaxation delays (d1) (defaults are 0.15s and 1s, respectively).

- Using the multiplicity editing feature results in a spectrum with the peaks from methylene-type carbons having the opposite phase to methyl and methine-type carbons. The experiment uses the CRISIS technique to minimize sensitivity loss due to unmatched coupling constants and echo time. CRISIS based multiplicity editing is on by default.
- The multiplicity-editing feature uses the CRISIS technique that relies on a hypothetical relationship between one-bond coupling constant and carbon chemical shift. Carbons with coupling constants that deviate significantly from this relationship (for example cyclopropanes or ethylene oxides) result in imperfect editing.
- In general, the HSQC-type experiments provide spectra with narrower peaks shapes (by suppressing $^{1}\text{H-}^{1}\text{H}$ homonuclear coupling modulation in F1) than the HMQC-types, leading to typically better S/N and resolution.
- The HSQCAD experiment has a sensitivity advantage (factor of ~ 1.4) over the gHSQCAD, but due to t1 noise from strong signals such as t-butyl, may produce potentially less clean spectra than its gradient counterpart.
- The HSQCAD uses adiabatic 180° carbon pulses and often gives better results than the HSQC, due to much improved uniform inversion over a wide 13 C spectral width.
- Datasets with moderate S/N are better processed with 2*ni linear prediction instead of the default (4*ni). Remember to reset the window function along F1 axis if linear prediction parameters are changed.

References:

G. Bodenhausen, D. J. Ruben, Chem. Phys. Lett. 69 (1980) 185-189. (HSQC)

E. Kupce, R. Freeman, J. Magn. Reson. Ser. A 117 (1995) 246-256. (Adiabatic Pulses)

R. D. Boyer, R. Johnson, K. Krishnamurthy, J. Magn. Reson. 165 (2003) 253-259 (HSQCAD / CRISIS-HSQC)

4 Heteronuclear 2D 1-bond - J1(CH)corr gHSQCAD

gHSQCAD

General description and usage

Description:

Two dimensional heteronuclear single-quantum 1-bond J-correlation spectroscopy with adiabatic 180° X-nuclei pulses and gradient coherence selection.

Usage:

The gHSQCAD experiment is used to acquire a 2-dimensional spectrum to correlate protons with directly attached carbons. The experiment is very useful for proton and carbon assignments, because if the proton assignment is known, the carbon assignment can be deduced directly from this data and *vice versa*. For structure elucidation, carbon chemical shifts are particularly useful as they are highly sensitive to local functional groups and can be more reliably predicted. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Key parameters

Parameters	Description
Spectral Width (sw)	Set from previously acquired PROTON*
Acquisition time (at)	Set from "Pulse Sequence" panel, controls the resolution in F2, default 0.15s
F1 Nucleus (dn)	Pull- down menu to set F1 nucleus to 13 C, 15 N, or other*
C13 Spectral Width (ppm)	Type in desired chemical shift range for F1 dimension
Scans per t1 increment (nt)	Select typical choices from pull down menu*
t1 Increments (ni)	Select typical choices from pull down menu*- controls the resolution in F1 (minimum ~64)
One-Bond J1xh (j1xh)	Set value for the average $^1\mathrm{J}_{\mathrm{X},\mathrm{H}^{-}}$ 146 Hz works well for many carbons
H1-C13 Multiplicity Editing	Check box to turn on/off multiplicity editing
Steady State (ss)	Set from "Pulse Sequence" panel, turn on/off gradient cleanup between scans
C12-H1 suppression	Set from "Pulse Sequence" panel- controls type of ¹² C suppression- default is TANGO-Gradient (highly recommended)

NOTE

You can type specific values for these parameters manually in the appropriate boxes on the "Acquisition" or "Pulse Sequence" panels.

Processing

Automated processing is turned on by default, and the parameters are set to reasonable values such that the resulting data after the acquisition usually require no further adjustment. The "Process" tab/"Basic" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (1k x 1k is the default), as well as a check box to turn on/off linear prediction and a pull-down to control the extent of linear prediction (default is 4*ni). Menus to quickly change the weighting functions in F2/F1 are also present (defaults are gaussians). More processing details are found under some of the other "Process" panels, such as the "Default", "Weighting", and "More 2D" panels.

Tips, tricks, and next steps

- Spectral width (sw) setting transfers from a PROTON if the gHSQCAD is set up from this experiment. Receiver gain (gain) is usually set to a high value (≥30), unless the sample is extremely concentrated or ¹³C-labelled.
- To measure ¹H-¹³C (or ¹H-X) coupling constants, the carbon decoupling can be turned off by entering "nnn" in the Channel 2 "Dec On/Off" entry on the "Channels" panel or alternatively by typing dm='nnn' on the command line.

- The default number of steady state scans (ss) that are acquired before data acquisition to establish sample equilibrium is 32, which works for most samples. However, higher power carbon decoupling may cause some perturbations that may necessitate more ss scans to reach equilibrium. This value is changed on the "Acquisition" panel of the "Acquire" tab if necessary.
- The default parameters use a Grad-90-Grad steady state between scans, which helps cleanup un-relaxed magnetization. This results in cleaner spectra, especially when using shorter acquisition times (at) and relaxation delays (d1) (defaults are 0.15s and 1s, respectively).
- Using the multiplicity editing feature result in a spectrum with the peaks from methylene-type carbons having the opposite phase to methyl and methine-type carbons. The experiment uses the CRISIS technique to minimize sensitivity loss due to unmatched coupling constants and echo time. CRISIS based multiplicity editing is on by default.
- In general, the HSQC-type experiments provide spectra with narrower peaks shapes (by suppressing $^{1}\text{H-}^{1}\text{H}$ homonuclear coupling modulation in F1) than the HMQC-types, leading to typically better S/N and resolution.
- The HSQCAD experiment has a sensitivity advantage (factor of ~ 1.4) over the gHSQCAD, but due to t1 noise from strong signals such as t-butyl may produce potentially less clean spectra than its gradient counterpart.
- The gHSQCAD uses adiabatic 180° carbon pulses and often gives better results than the gHSQC, due to much improved uniform inversion over a wide 13 C spectral width.
- Datasets with moderate S/N are better processed with 2*ni linear prediction instead of the default (4*ni). Remember to reset the window function along F1 axis if linear prediction parameters are changed.

References:

G. Bodenhausen, D. J. Ruben, Chem. Phys. Lett. 69 (1980) 185-189. (HSQC)

E. Kupce, R. Freeman, J. Magn. Reson. Ser. A 117 (1995) 246-256. (Adiabatic Pulses)

R. E. Hurd, J. Magn. Reson. 87 (1990) 422-428. (Gradient based Coherence Selection)

4 Heteronuclear 2D 1-bond - J1(CH)corr

Tips, tricks, and next steps

R. D. Boyer, R. Johnson, K. Krishnamurthy, J. Magn. Reson. 165 (2003) 253-259 (gHSQCAD / CRISIS-gHSQC)

Heteronuclear 2D 1-bond - J1(CH)corr 4 Tips, tricks, and next steps

4 Heteronuclear 2D 1-bond - J1(CH)corr HSQC

HSQC

General description and usage

Description:

Two dimensional heteronuclear single-quantum 1-bond J-correlation spectroscopy.

Usage:

The HSQC experiment is used to acquire a 2-dimensional spectrum to correlate protons with directly attached carbons. The experiment is very useful for proton and carbon assignments, because if the proton assignment is known, the carbon assignment can be deduced directly from this data and *vice versa*. For structure elucidation, carbon chemical shifts are particularly useful as they are highly sensitive to local functional groups and can be more reliably predicted. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.
Parameter	Description	
Spectral Width (sw)	Set from previously acquired PROTON*	
Acquisition time (at)	Set from "Pulse Sequence" panel, controls the resolution in F2, default 0.15s	
F1 Nucleus (dn)	Pull- down menu to set F1 nucleus to 13 C, 15 N, or other*	
C13 Spectral Width (ppm)	Type in desired chemical shift range for F1 dimension	
Scans per t1 increment (nt)	Select typical choices from pull down menu*	
t1 Increments (ni)	Select typical choices from pull down menu*- controls the resolution in F1 (minimum ~64)	
One-Bond J1xh (j1xh)	Set value for the average $^1\mathrm{J}_{\mathrm{X},\mathrm{H}^{-}}$ 146 Hz works well for many carbons	
H1-C13 Multiplicity Editing	Check box to turn on/off multiplicity editing	
Steady State (ss)	Set from "Pulse Sequence" panel, turn on/off gradient cleanup between scans	
C12-H1 suppression	Set from "Pulse Sequence" panel- controls type of ¹² C suppression- default is TANGO-Gradient (highly recommended)	

NOTE

4 Heteronuclear 2D 1-bond - J1(CH)corr

Processing

Processing

Automated processing is turned on by default, and the parameters are set to reasonable values such that the resulting data after the acquisition usually require no further adjustment. The "Process" tab/"Basic" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (1k x 1k is the default), as well as a check box to turn on/off linear prediction and a pull-down to control the extent of linear prediction (default is 4*ni). Menus to quickly change the weighting functions in F2/F1 are also present (defaults are gaussians). More processing details are found under some of the other "Process" panels, such as the "Default", "Weighting", and "More 2D" panels.

- Spectral width (sw) setting transfers from a PROTON if the HSQC is set up from this experiment. Receiver gain (gain) is usually set to a high value (\geq 30), unless the sample is extremely concentrated or ¹³C-labelled.
- To measure ¹H-¹³C (or ¹H-X) coupling constants, the carbon decoupling can be turned off by entering "nnn" in the Channel 2 "Dec On/Off" entry on the "Channels" panel or alternatively by typing dm='nnn' on the command line.

- The default number of steady state scans (ss) that are acquired before data acquisition to establish sample equilibrium is 32, which works for most samples. However, higher power carbon decoupling may cause some perturbations that may necessitate more ss scans to reach equilibrium. This value is changed on the "Acquisition" panel of the "Acquire" tab if necessary.
- The default parameters use a Grad-90-Grad steady state between scans, which helps cleanup un-relaxed magnetization. This can result in much cleaner spectra, especially when using shorter acquisition times (at) and relaxation delays (d1) (defaults are 0.15s and 1s, respectively).
- Using the multiplicity editing feature results in a spectrum with the peaks from methylene-type carbons having the opposite phase to methyl and methine-type carbons. There is a sensitivity loss with this feature due to unmatched coupling constants and echo time, but the extra information about multiplicity is usually worth the loss in sensitivity. Hence this feature is on by default. Alternately, consider using HSQCAD to minimize this sensitivity loss.
- In general, the HSQC-type experiments provide spectra with narrower peaks shapes (by suppressing $^{1}\text{H-}^{1}\text{H}$ homonuclear coupling modulation in F1) than the HMQC-types, leading to typically better S/N and resolution.
- The HSQC experiment has a sensitivity advantage (factor of ~ 1.4) over the gHSQC, but due to t1 noise from strong signals such as t-butyl may produce potentially less clean spectra than its gradient counterpart.
- The HSQCAD and gHSQCAD use adiabatic 180° carbon pulses and invariably gives better results than the HSQC.
- Datasets with moderate S/N are better processed with 2*ni linear prediction instead of the default (4*ni). Remember to reset the window function along F1 axis if linear prediction parameters are changed.

References:

G. Bodenhausen, D. J. Ruben, Chem. Phys. Lett. 69 (1980) 185-189. (HSQC)

A. G. Palmer III, J. Cavanagh, P. E. Wright, M. Rance, J. Magn. Reson. 93 (1991) 151-170. (HSQC)

4 Heteronuclear 2D 1-bond - J1(CH)corr gHSQC

gHSQC

General description and usage

Description:

Two dimensional heteronuclear single-quantum 1-bond J-correlation spectroscopy with gradient coherence selection.

Usage:

The gHSQC experiment is used to acquire a 2-dimensional spectrum to correlate protons with directly attached carbons. The experiment is very useful for proton and carbon assignments, because if the proton assignment is known, the carbon assignment can be deduced directly from this data and *vice versa*. For structure elucidation, carbon chemical shifts are particularly useful as they are highly sensitive to local functional groups and can be more reliably predicted. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Parameter	Description
Spectral Width (sw)	Set from previously acquired PROTON*
Acquisition time (at)	Set from "Pulse Sequence" panel, controls the resolution in F2, default 0.15s
F1 Nucleus (dn)	Pull- down menu to set F1 nucleus to ¹³ C, ¹⁵ N, or other*
C13 Spectral Width (ppm)	Type in desired chemical shift range for F1 dimensionScans per t1 increment (nt)
Select typical choices from pull down menu*	
t1 Increments (ni)	Select typical choices from pull down menu*- controls the resolution in F1 (minimum ~64)
One-Bond J1xh (j1xh)	Set value for the average $^1\mathrm{J}_{\mathrm{X},\mathrm{H}^-}$ 146 Hz works well for many carbons
H1-C13 Multiplicity Editing	Check box to turn on/off multiplicity editing
Steady State (ss)	Set from "Pulse Sequence" panel, turn on/off gradient cleanup between scans
C12-H1 suppression	Set from "Pulse Sequence" panel- controls type of ¹² C suppression- default is TANGO-Gradient (highly recommended)

NOTE

4 Heteronuclear 2D 1-bond - J1(CH)corr

Processing

Processing

Automated processing is turned on by default, and the parameters are set to reasonable values, such that the resulting data after the acquisition usually require no further adjustment. The "Process" tab/"Basic" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (1k x 1k is the default), as well as a check box to turn on/off linear prediction and a pull-down to control the extent of linear prediction (default is 4*ni). Menus to quickly change the weighting functions in F2/F1 are also present (defaults are gaussians). More processing details are found under some of the other "Process" panels, such as the "Default", "Weighting", and "More 2D" panels.

- Spectral width (sw) setting transfers from a PROTON if the gHSQC is set up from this experiment. Receiver gain (gain) is usually set to a high value (\geq 30), unless the sample is extremely concentrated or ¹³C-labelled.
- To measure ¹H-¹³C (or ¹H-X) coupling constants, the carbon decoupling can be turned off by entering "nnn" in the Channel 2 "Dec On/Off" entry on the "Channels" panel or alternatively by typing dm='nnn' on the command line.

- The default number of steady state scans (ss) that are acquired before data acquisition to establish sample equilibrium is 32, which works for most samples. However, higher power carbon decoupling may cause some perturbations that may necessitate more ss scans to reach equilibrium. This value is changed on the "Acquisition" panel of the "Acquire" tab if necessary.
- The default parameters use a Grad-90-Grad steady state between scans, which helps cleanup un-relaxed magnetization. This can result in much cleaner spectra, especially when using shorter acquisition times (at) and relaxation delays (d1) (defaults are 0.15s and 1s, respectively).
- Using the multiplicity editing feature results in a spectrum with the peaks from methylene-type carbons having the opposite phase to methyl and methine-type carbons. There is a sensitivity loss with this feature due to unmatched coupling constants and echo time, but the extra information about multiplicity is usually worth the loss in sensitivity. Hence this feature is on by default. Alternately, consider using gHSQCAD to minimize this sensitivity loss.
- In general, the HSQC-type experiments provide spectra with narrower peaks shapes (by suppressing ¹H- ¹H homonuclear coupling modulation in F1) than the HMQC-types, leading to typically better S/N and resolution.
- The HSQC experiment has a sensitivity advantage (factor of ~ 1.4) over the gHSQC, but due to t1 noise from strong signals such as t-butyl may produce potentially less clean spectra than its gradient counterpart.
- The HSQCAD and gHSQCAD use adiabatic 180° carbon pulses and invariably give better results than the gHSQC.
- Datasets with moderate S/N are better processed with 2*ni linear prediction instead of the default (4*ni). Remember to reset the window function along F1 axis if linear prediction parameters are changed.

References:

G. Bodenhausen, D. J. Ruben, Chem. Phys. Lett. 69 (1980) 185-189. (HSQC)

R. E. Hurd, J. Magn. Reson. 87 (1990) 422-428. (Gradient based Coherence Selection)

4 Heteronuclear 2D 1-bond - J1(CH)corr HMQC

HMQC

General description and usage

Description:

Two dimensional heteronuclear multiple-quantum 1-bond J-correlation spectroscopy.

Usage:

The HMQC experiment is used to acquire a 2-dimensional spectrum to correlate protons with directly attached carbons. The experiment is very useful for proton and carbon assignments, because if the proton assignment is known, the carbon assignment can be deduced directly from this data and *vice versa*. For structure elucidation, carbon chemical shifts are particularly useful as they are highly sensitive to local functional groups and can be more reliably predicted. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Parameters	Description	
Spectral Width (sw)	Set from previously acquired PROTON*	
Acquisition time (at)	Set from "Pulse Sequence" panel, controls the resolution in F2, default 0.15s	
F1 Nucleus (dn)	Pull- down menu to set F1 nucleus to $^{13}\mathrm{C},^{15}\mathrm{N},$ or other*	
C13 Spectral Width (ppm)	Type in desired chemical shift range for F1 dimension	
Scans per t1 increment (nt)	Select typical choices from pull down menu*	
t1 Increments (ni)	Select typical choices from pull down menu*- controls the resolution in F1 (minimum ~64)	
One-Bond J1xh (j1xh)	Set value for the average $^1\mathrm{J}_{\mathrm{X},\mathrm{H}^{-}}$ 146 Hz works well for many carbons	
Steady State (ss)	Set from "Pulse Sequence" panel, turn on/off gradient cleanup between scans	
C12-H1 suppression	Set from "Pulse Sequence" panel- controls type of ¹² C suppression- default is TANGO-Gradient (highly recommended)	

NOTE

Defaults	Experiment: HMQC Solvent: cdcl3	Observe: H1 H1-C13 Correlation
Pulse Sequence PRESAT WET Parameters Channels Flags Future Actions Overview	Acquisition Options F1 Nucleus C13 C13 Spectral Width (ppm) Scans per 11 Increment 11 Increments One-Bond J1xh F1 Nucleus C13 C13 C13 C13 C14	Receiver Gain (dB): 30

4 Heteronuclear 2D 1-bond - J1(CH)corr Processing

Processing

Automated processing is turned on by default, and the parameters are set to reasonable values, such that the resulting data after the acquisition usually require no further adjustment. The "Process" tab/"Basic" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (1k x 1k is the default), as well as a check box to turn on/off linear prediction and a pull-down to control the extent of linear prediction (default is 4*ni). Menus to quickly change the weighting functions in F2/F1 are also present (defaults are gaussians). More processing details are found under some of the other "Process" panels, such as the "Default", "Weighting", and "More 2D" panels.

- Spectral width (sw) setting transfers from a PROTON if the HMQC is set up from this experiment. Receiver gain (gain) is usually set to a high value (\geq 30), unless the sample is extremely concentrated or ¹³C-labelled.
- To measure ¹H-¹³C (or ¹H-X) coupling constants, the carbon decoupling can be turned off by entering "nnn" in the Channel 2 "Dec On/Off" entry on the "Channels" panel or alternatively by typing dm='nnn' on the command line.
- The default number of steady state scans (ss) that are acquired before data acquisition to establish sample equilibrium is 32, which works for most samples. However, higher power carbon decoupling may cause some perturbations that may necessitate more ss scans to reach equilibrium. This value is changed on the "Acquisition" panel of the "Acquire" tab if necessary.
- The default parameters use a Grad-90-Grad steady state between scans, which helps cleanup un-relaxed magnetization. This can result in much cleaner spectra, especially when using shorter acquisition times (at) and relaxation delays (d1) (defaults are 0.15s and 1s, respectively).
- The HMQC experiment has a sensitivity advantage (factor of ~1.4) over the gHMQC, but due to t1 noise from strong signals such as t-butyl may produce potentially less clean spectra than its gradient counterpart.

• In general, the HSQC-type experiments provide spectra with narrower peaks shapes (by suppressing ¹H-¹H homonuclear coupling modulation in F1) than the HMQC-types, leading to typically better S/N and resolution. In addition, the HSQC experiments have the added ability to do multiplicity- editing.

References:

L. Muller, J. Am. Chem. Soc. 101 (1979) 4481-4484. (HMQC)

A. Bax, R. H. Griffey, B. L. Hawkins, J. Magn. Reson. 55 (1983) 301-315. (HMQC)

4 Heteronuclear 2D 1-bond - J1(CH)corr gHMQC

gHMQC

General description and usage

Description:

Two dimensional heteronuclear multiple-quantum 1-bond J-correlation spectroscopy with gradient coherence selection.

Usage:

The gHMQC experiment is used to acquire a 2-dimensional spectrum to correlate protons with directly attached carbons. The experiment is very useful for proton and carbon assignments, because if the proton assignment is known, the carbon assignment can be deduced directly from this data and *vice versa*. For structure elucidation, carbon chemical shifts are particularly useful as they are highly sensitive to local functional groups and can be more reliably predicted. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Parameters	Description	
Spectral Width (sw)	Set from previously acquired PROTON*	
Acquisition time (at)	Set from "Pulse Sequence" panel, controls the resolution in F2, default 0.15s	
F1 Nucleus (dn)	Pull- down menu to set F1 nucleus to $^{13}\mathrm{C},^{15}\mathrm{N},$ or other*	
C13 Spectral Width (ppm)	Type in desired chemical shift range for F1 dimension	
Scans per t1 increment (nt)	Select typical choices from pull down menu*	
t1 Increments (ni)	Select typical choices from pull down menu*- controls the resolution in F1 (minimum ~64)	
One-Bond J1xh (j1xh)	Set value for the average $^1\mathrm{J}_{\mathrm{X},\mathrm{H}^{-}}$ 146 Hz works well for many carbons	
Steady State (ss)	Set from "Pulse Sequence" panel, turn on/off gradient cleanup between scans	
C12-H1 suppression	Set from "Pulse Sequence" panel- controls type of ¹² C suppression- default is TANGO-Gradient (highly recommended)	

NOTE

Defaults Acquisition	Experiment: gHMQC Solvent: cdcl3	Observe: H1 H1-C13 Correlation
Pulse Sequence PRESAT WET Parameters Channels Flags Future Actions Overview	Acquisition Options F1 Nucleus C13 C13 Spectral Width (ppm) Scans per 11 Increment 11 Increments One-Bond J1xh Hz	Receiver Gain (dB): 30

4 Heteronuclear 2D 1-bond - J1(CH)corr Processing

Processing

Automated processing is turned on by default, and the parameters are set to reasonable values, such that the resulting data after the acquisition usually require no further adjustment. The "Process" tab/"Basic" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (1k x 1k is the default), as well as a check box to turn on/off linear prediction and a pull-down to control the extent of linear prediction (default is 4*ni). Menus to quickly change the weighting functions in F2/F1 are also present (defaults are gaussians). More processing details are found under some of the other "Process" panels, such as the "Default", "Weighting", and "More 2D" panels.

- Spectral width (sw) setting transfers from a PROTON if the gHMQC is set up from this experiment. Receiver gain (gain) is usually set to a high value (\geq 30), unless the sample is extremely concentrated or ¹³C-labelled.
- To measure ¹H-¹³C (or ¹H-X) coupling constants, the carbon decoupling can be turned off by entering "nnn" in the Channel 2 "Dec On/Off" entry on the "Channels" panel or alternatively by typing dm='nnn' on the command line.
- The default number of steady state scans (ss) that are acquired before data acquisition to establish sample equilibrium is 32, which works for most samples. However, higher power carbon decoupling may cause some perturbations that may necessitate more ss scans to reach equilibrium. This value is changed on the "Acquisition" panel of the "Acquire" tab if necessary.
- The default parameters use a Grad-90-Grad steady state between scans, which helps cleanup un-relaxed magnetization. This can result in much cleaner spectra, especially when using shorter acquisition times (at) and relaxation delays (d1) (defaults are 0.15s and 1s, respectively).
- The HMQC experiment has a sensitivity advantage (factor of ~1.4) over the gHMQC, but due to t1 noise from strong signals such as t-butyl may produce potentially less clean spectra than its gradient counterpart.

• In general, the HSQC-type experiments provide spectra with narrower peaks shapes (by suppressing ¹H-¹H homonuclear coupling modulation in F1) than the HMQC-types, leading to typically better S/N and resolution. In addition, the HSQC experiments have the added ability to do multiplicity editing.

References:

L. Muller, J. Am. Chem. Soc. 101 (1979) 4481-4484. (HMQC)

A. Bax, R. H. Griffey, B. L. Hawkins, J. Magn. Reson. 55 (1983) 301-315. (HMQC)

R. E. Hurd, J. Magn. Reson. 87 (1990) 422-428. (Gradient based Coherence Selection)

4 Heteronuclear 2D 1-bond - J1(CH)corr HETCOR

HETCOR

General description and usage

Description:

Two dimensional heteronuclear 1-bond shift correlation with carbon observe.

Usage:

The HETCOR experiment is used to acquire a 2-dimensional spectrum to correlate protons with directly attached carbons. However unlike the HSQC/HMQC experiments HETCOR is carbon-detected, meaning the F1 dimension is ¹H and the F2 dimension is ¹³C. Because the HETCOR is significantly less sensitive than the proton-detected HSQC/HMQC, use it only under special circumstances where higher resolution is desired in the carbon dimension. The proton decoupling power (during acquisition) used is also usually less. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

arameter Description	
Spectral Width (sw)	Set from previously acquired CARBON or type in desired values
Acquisition time (at)	Set from "Pulse Sequence" panel, controls the resolution in F2, default 0.064s
Scans per t1 increment (nt)	Select typical choices from pull down menu*
t1 Increments (ni)	Select typical choices from pull down menu*- controls the resolution in F1 (minimum ~64)
One-Bond Coupling	Set value for the average ¹ J _{X,H} on "Pulse Sequence" panel- 146 Hz works well for many carbons
Steady State (ss)	Set from "Pulse Sequence" panel, turn on/off gradient cleanup between scans

NOTE

Defaults Acquisition	Experiment: HETCOR Solvent: cdcl3	Observe: C13 C13-H1 Correlation
Pulse Sequence Channels Flags Future Actions Overview	Acquisition Options Spectral Width -17.5 to 237.5 ppm Scans per t1 Increment 4 × t1 Increments 128 ×	Receiver Gain (dB): 30

4 Heteronuclear 2D 1-bond - J1(CH)corr Processing

Processing

Automated processing is turned on by default, and the parameters are set to reasonable values, such that the resulting data after the acquisition usually require no further adjustment. The "Process" tab/"Basic" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (2k x 1k is the default), as well as a check box to turn on/off linear prediction and a pull-down to control the extent of linear prediction (default is 4*ni). Menus to quickly change the weighting functions in F2/F1 are also present (defaults are gaussians). More processing details are found under some of the other "Process" panels, such as the "Default", "Weighting", and "More 2D" panels.

- Spectral width (sw) setting transfers from a CARBON if the HETCOR is set up from this experiment. Receiver gain (gain) is usually set to a high value (≥30), unless the sample is extremely concentrated or ¹³C-labelled.
- The default number of steady state scans (ss) that are acquired before data acquisition to establish sample equilibrium is 32, which works for most samples. This value is changed on the "Acquisition" panel of the "Acquire" tab if necessary.
- The default parameters use a Grad-90-Grad steady state between scans, which helps cleanup un-relaxed magnetization. The default setting for this parameter is off.
- The embedded multiplicity- editing results in a spectrum with the peaks from methylene-type carbons having the opposite phase to methyl and methine-type carbons.
- The HETCOR also generates an effective 1 H broadband decoupling along the F1 (H1) dimension.
- The HETCOR experiment has a sensitivity advantage (factor of ~ 1.4) over the gHETCOR, but due to t1 noise from strong signals such as t-butyl, may produce potentially less clean spectra than its gradient counterpart.

• In general, the HSQC-type experiments are far more sensitive than the HETCOR. The advantages to the HETCOR are lower decoupling power and potentially higher resolution for carbon. The band-selective HSQC experiment, (HC)bsHSQCAD (see Chapter 7), however, is a much more sensitive experiment and may provide a more convenient way to achieve higher 13 C resolution.

References:

- A. Bax, G. A. Morris, J. Magn. Reson. 42 (1981), 501-505. (HETCOR)
- D. L. Turner, Prog. NMR. Spectrosc. 17 (1985) 281-358. (2D NMR)

4 Heteronuclear 2D 1-bond - J1(CH)corr gHETCOR

gHETCOR

General description and usage

Description:

Two dimensional heteronuclear 1-bond shift correlation with carbon observe and gradient coherence selection.

Usage:

The gHETCOR experiment is used to acquire a 2-dimensional spectrum to correlate protons with directly attached carbons. However unlike the gHSQC/gHMQC experiments gHETCOR is carbon-detected, meaning the F1 dimension is ¹H and the F2 dimension is ¹³C. Because the gHETCOR is significantly less sensitive than the proton-detected gHSQC/gHMQC, and use it only under special circumstances where higher resolution is desired in the carbon dimension. The proton decoupling power (during acquisition) used is also usually less. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

arameter Description	
Spectral Width (sw)	Set from previously acquired CARBON or type in desired values
Acquisition time (at)	Set from "Pulse Sequence" panel, controls the resolution in F2, default 0.064s
Scans per t1 increment (nt)	Select typical choices from pull down menu*
t1 Increments (ni)	Select typical choices from pull down menu*- controls the resolution in F1 (minimum ~64)
One-Bond Coupling	Set value for the average ¹ J _{X,H} on "Pulse Sequence" panel- 146 Hz works well for many carbons
Steady State (ss)	Set from "Pulse Sequence" panel, turn on/off gradient cleanup between scans

NOTE

Defaults	Experiment: gHETCOR Solvent: cdcl3	Observe: C13 C13-H1 Correlation
Pulse Sequence Channels Flags Future Actions Overview	Acquisition Options Spectral Width -17.5 to 237.5 ppm Scans per t1 increment 4 • t1 increments 128 •	Receiver Gain (dB): 30

4 Heteronuclear 2D 1-bond - J1(CH)corr Processing

Processing

Automated processing is turned on by default, and the parameters are set to reasonable values, such that the resulting data after the acquisition usually require no further adjustment. The "Process" tab/"Basic" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (2k x 1k is the default), as well as a check box to turn on/off linear prediction and a pull-down to control the extent of linear prediction (default is 4*ni). Menus to quickly change the weighting functions in F2/F1 are also present (defaults are gaussians). More processing details are found under some of the other "Process" panels, such as the "Default", "Weighting", and "More 2D" panels.

- Spectral width (sw) setting transfers from a CARBON if the gHETCOR is set up from this experiment. Receiver gain (gain) is usually set to a high value (\geq 30), unless the sample is extremely concentrated or ¹³C-labelled.
- The default number of steady state scans (ss) that are acquired before data acquisition to establish sample equilibrium is 32, which works for most samples. This value is changed on the "Acquisition" panel of the "Acquire" tab if necessary.
- The default parameters use a Grad-90-Grad steady state between scans, which helps cleanup un-relaxed magnetization. The default setting for this parameter is off.
- The embedded multiplicity editing results in a spectrum with the peaks from methylene-type carbons having the opposite phase to methyl and methine-type carbons.
- The gHETCOR also generates an effective 1 H broadband decoupling along the F1 (H1) dimension.
- The HETCOR experiment has a sensitivity advantage (factor of ~ 1.4) over the gHETCOR, but due to t1 noise from strong signals from t-butyl, may produce potentially less clean spectra than its gradient counterpart.

• In general, the gHSQC-type experiments are far more sensitive than the gHETCOR. The advantages to the gHETCOR are lower decoupling power and potentially higher resolution for carbon. The band-selective HSQC experiment, (HC)bsgHSQCAD (see Chapter 7), however, is a much more sensitive experiment and may provide a more convenient way to achieve higher ¹³C resolution.

References:

A. Bax, G. A. Morris, J. Magn. Reson. 42 (1981), 501-505. (HETCOR)

D. L. Turner, Prog. NMR. Spectrosc. 17 (1985) 281-358. (2D NMR)

R. E. Hurd, J. Magn. Reson. 87 (1990) 422-428. (Gradient based Coherence Selection)

4 Heteronuclear 2D 1-bond - J1(CH)corr ASAPHMQC

ASAPHMQC

General description and usage

Description:

Two dimensional heteronuclear multiple-quantum 1-bond J-correlation spectroscopy with adiabatic 180° X-nuclei pulses and an "ASAP" feature for rapid recycle times.

Usage:

This experiment is used to acquire a 2-dimensional spectrum to correlate protons with directly attached carbons. The experiment is the most useful of the HMQC series as it contains a feature that allows for very fast recycle time. With a reasonably concentrated sample, it is possible to obtain an ASAPHMQC spectrum with adequate resolution in about 1 minute. For structure elucidation, carbon chemical shifts are particularly useful as they are highly sensitive to local functional groups and can be more reliably predicted. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Parameter	Description	
Spectral Width (sw)	Set from previously acquired PROTON*	
Acquisition time (at)	Set from "Pulse Sequence" panel, controls the resolution in F2, default 0.064s for ASAP	
F1 Nucleus (dn)	Pull- down menu to set F1 nucleus to ¹³ C, ¹⁵ N, or other*	
C13 Spectral Width (ppm)	Type in desired chemical shift range for F1 dimension	
Scans per t1 increment (nt)	Select typical choices from pull down menu*	
t1 Increments (ni)	Select typical choices from pull down menu*- controls the resolution in F1	
One-Bond J1xh (j1xh)	Set value for the average $^1\mathrm{J}_{\mathrm{X},\mathrm{H}^-}$ 146 Hz works well for many carbons	
ASAP	Check box to turn on/off ASAP feature (off gives an HMQC with adiabatic 180º X-nuclei pulses	
Relaxation time (d1)	Set from "Acquisition" panel- controls the delay between scans (default is 0.064s)	
Mixing time (mix)	Set from" Pulse Sequence" panel- mixing time for adiabatic pulses (default is 25ms)	
Steady State (ss)	Set from "Pulse Sequence" panel, turn on/off gradient cleanup between scans	

NOTE

Heteronuclear 2D 1-bond - J1(CH)corr 4 Processing

Processing

Automated processing is turned on by default, and the parameters are set to reasonable values, such that the resulting data after the acquisition usually require no further adjustment. The "Process" tab/"Basic" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (1k x 1k is the default), as well as a check box to turn on/off linear prediction and a pull-down to control the extent of linear prediction (default is 4^* ni). Menus to quickly change the weighting functions in F2/F1 are also present (defaults are gaussians). More processing details are found under some of the other "Process" panels, such as the "Default", "Weighting", and "More 2D" panels.

- Spectral width (sw) setting transfers from a PROTON if the ASAPHMQC is set up from this experiment. Receiver gain (gain) is usually set to a high value (\geq 30), unless the sample is extremely concentrated or ¹³C-labelled.
- ASAPHMQC as a fast method gives significantly better sensitivity than other members of the heteronuclear one-bond correlation experiments for a given spectrometer time. This alone overweighs other advantages of traditional experiments.

- During the short relaxation delay (d1), the ASAPHMQC employs a TOCSY-type magnetization transfer from ¹²C-attached protons (which are kept along z during the pulse sequence) to the observed ¹³C-attached protons. Note that because of this transfer, the ASAPHMQC works best if one or several protons are in the neighborhood (i.e., spin system) of the observed ¹³C-¹H pair. Lone ¹³C-¹H pairs without neighboring protons may therefore show up at a much lower intensity. In such cases it may help to increase d1 from the default 60ms.
- The adiabatic pulses and rapid recycle time make the ASAPHMQC experiment a good choice for obtaining carbon information in automation. This experiment is also a good way to rapidly obtain "survey" carbon information for a subsequent band-selective experiment (see Chapter 7).

References:

E. Kupce, R. Freeman, J. Magn. Reson. Ser. A 117 (1995) 246-256. (Adiabatic Pulses)

E. Kupce, R. Freeman, Magn. Reson. Chem. 45 (2007) 2-4. (ASAPHMQC)

4 Heteronuclear 2D 1-bond - J1(CH)corr

Agilent VnmrJ 4 Experiment Guide

5 Heteronuclear 2D multiple-bond -Jn(CH)corr

Jn(CH)corr Tab 176 gHMBCAD 178 gHMBC 182 gH2BCAD 186 gH2BC 190 CIGAR 194 CIGARAD 198 HMBC 202 gHMBCmeAD 206 gHMBCRELAY 212

5 Heteronuclear 2D multiple-bond - Jn(CH)corr Jn(CH)corr Tab

Jn(CH)corr Tab

This tab of the experiment selector contains 2D experiments showing long-range couplings from protons to carbon nuclei. The most commonly used experiment type, the HMBC, is available both with and without adiabatic 180° carbon pulses, and also with and without gradient coherence selection. The gradient enhanced version of the experiment has better artifact suppression at the expense of a loss of sensitivity (factor of \sim 1.4). The adiabatic version, gHMBCAD is very highly recommended, as it provides more uniform inversion profiles for a wide ¹³C spectral width. and at the same time compensates for any ¹³C pwx imperfections in the 180° pulses. There is a multiplicity- edited version of this experiment, gHMBCmeAD, and an experiment that provides similar information to differentiate between 2-bond and >2-bond couplings, the gHMBCRELAY. The H2BC experiment (adiabatic and non-adiabatic) is used to show specifically 2-bond proton-carbon correlations involving non-quaternary carbons. This experiment is, in principle, an HMQC-COSY equivalent. Finally, there are the adiabatic and non-adiabatic CIGAR experiments. While the HMBC experiments are typically optimized for a single Jn(XH) coupling constant, the CIGAR experiments attempt to optimize a range for this coupling constant. This experiment is particularly effective for ¹⁵N. where the Jn(NH) coupling constants can vary widely.

Long-range proton-carbon correlations are often used in structure elucidation to provide key connectivity data between separated spin systems and to quaternary carbons. The HMBC type experiments are generally more sensitive than 1D CARBON spectra for detecting quaternary carbons (with the exception of carbons which are 3 or 4 bonds away from any proton). The sensitivity of these experiments does vary widely from correlation to correlation. When the HMBC type experiments are used with less concentrated samples, while it may not show all correlations, even a partial long range correlation data set is highly valuable for structure elucidation.

Most of these experiments (except gHMBCRELAY, gH2BC and gH2BCAD) rely on ${}^{1}\text{H}{}^{-13}\text{C}$ correlations via long-range coupling constants. In general 3-bond coupling constants (~8 Hz) are larger than 2-bond coupling constants (~2-3 Hz) and typically tend to give stronger crosspeaks when the experiment parameters are optimized for 8 Hz. However, care must be exercised in interpreting these crosspeaks from their intensity as arising

from 2 or 3 bond correlations, as they can only be definitively identified as crosspeaks due to smaller coupling constants (and may be 2, 3, or 4 bonds away). The 2-bond correlation experiments gH2BC and gH2BCAD, although less sensitive than the HMBC, are used to distinguish between 2-and 3-bond correlations.

Experiment Selector	₽ ×		
HF_Expts (HC)Crisis2 Hadamard			
Sel2D Dosy 2	D Dosy 3D		
Jn(CH)corr (H)Sel1	.D(HC)HetToxys		
Service (HH)Homo2D	JSpectra J1(CH)corr		
Common Std 1D (0	C)corr System Studies		
gHMBCAD	gHMBC		
gH2BCAD	gH2BC		
CIGAR	CIGARAD		
НМВС	gHMBCmeAD		
gHMBCRELAY			

5 Heteronuclear 2D multiple-bond - Jn(CH)corr gHMBCAD

gHMBCAD

General description and usage

Description:

Two dimensional heteronuclear multiple-bond J-correlation spectroscopy with adiabatic 180° X-nuclei pulses and gradient coherence selection.

Usage:

The gHMBCAD experiment is used to acquire a 2-dimensional spectrum to correlate protons with carbons, usually over 2-3 bonds with the 3-bond correlations typically being stronger. The experiment is highly useful for structure elucidation as the longer range correlations allow connectivities between isolated proton spin systems to be identified. The gHMBCAD experiment is also one of the most sensitive ways to obtain information about quaternary carbon chemical shifts and connectivities. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Parameter	Description
Spectral Width (sw)	Set from previously acquired PROTON*
Acquisition time (at)	Set from "Pulse Sequence" panel, controls the resolution in F2, default 0.15s
F1 Nucleus (dn)	Pull- down menu to set F1 nucleus to ¹³ C, ¹⁵ N, or other*
C13 Spectral Width (ppm)	Type in desired chemical shift range for F1 dimension
Scans per t1 increment (nt)	Select typical choices from pull down menu*
t1 Increments (ni)	Select typical choices from pull down menu*- controls the resolution in F1 (minimum ~64)
Multiple-Bond Jnxh (jnxh)	Pull-down menu to set value for the average ⁿ J _{X,H⁻} 8 Hz works well for most molecules
One-Bond suppression	Set from "Pulse Sequence" panel- turn on/off suppression of one-bond correlations- default is on
Steady State (ss)	Set from "Pulse Sequence" panel, turn on/off gradient cleanup between scans

NOTE

5 Heteronuclear 2D multiple-bond - Jn(CH)corr Processing

Processing

Automated processing is turned on by default, and the parameters are set to reasonable values, such that the resulting data after the acquisition usually requires no further adjustment. The "Process" tab/"Basic" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (2k x 1k is the default), as well as a check box to turn on/off linear prediction and a pull-down to control the extent of linear prediction (default is 4*ni). Menus to quickly change the weighting functions in F2/F1 are also present (defaults are gaussian in F1 and sqsinebell in F2). More processing details are found under some of the other "Process" panels, such as the "Default", "Weighting", and "More 2D" panels. It is important to note that this experiment employs mix-mode processing, with the F2 dimension absolute value and F1 phase sensitive mode. This arrangement allows for the best balance of resolution and sensitivity.

- Spectral width (sw) setting transfers from a PROTON if the gHMBCAD is set up from this experiment. Receiver gain (gain) is usually set to a high value (\geq 30), unless the sample is extremely concentrated or ¹³C-labelled.
- The default number of steady state scans (ss) that are acquired before data acquisition to establish sample equilibrium is 32, which works for most samples. This value is changed on the "Acquisition" panel of the "Acquire" tab if necessary.
- The default parameters use a Grad-90-Grad steady state between scans, which helps cleanup un-relaxed magnetization. This can result in much cleaner spectra, especially when using shorter acquisition times (at) and relaxation delays (d1) (defaults are 0.15s and 1s, respectively).
- In general, the HMBC-type experiments have the best sensitivity of the Jn(CH)corr experiments- the other experiments provide specialized data for specific information types.

- The jnxh sets the optimal value of the proton-carbon coupling constant for detection. Using smaller values may increase the chances of seeing longer-range correlations, but at the expense of correlations with larger coupling constants, and, more importantly, at the expense of sensitivity loss. The CIGARAD experiment is better suited on a reasonably concentrated sample for detecting longer range correlations from a range of coupling constants, but at the expense of sensitivity.
- The experiment features a 2-step low-pass filter that can eliminate undesired crosspeaks from one-bond couplings. Select two coupling constants on the "Pulse Sequence" panel around which one-bond couplings are eliminated (default values are 165 and 130 Hz). These filters are rather narrow-band, however, and if the spread of coupling constants is such that some couplings lie considerably outside these values (for example 115 or 145 Hz), its signals may still be visible in the spectrum. As HMBC-type spectra are recorded without ¹³C decoupling, such signals can usually still be discerned from long-range crosspeaks by their one-bond splitting.
- The gHMBCAD uses adiabatic 180° carbon pulses and invariably gives better results than the gHMBC.

References:

A. Bax, M. F. Summers, J. Am. Chem. Soc. 108 (1986) 2093-2094. (HMBC)

R. E. Hurd, J. Magn. Reson. 87 (1990) 422-428. (Gradient based Coherence Selection)

C. E. Hadden, Magn. Reson. Chem. 43 (2005) 330-333. (Adiabatic Pulses)

5 Heteronuclear 2D multiple-bond - Jn(CH)corr gHMBC

gHMBC

General description and usage

Description:

Two dimensional heteronuclear multiple-bond J-correlation spectroscopy with gradient coherence selection.

Usage:

The gHMBC experiment is used to acquire a 2-dimensional spectrum to correlate protons with carbons, usually over 2-3 bonds with the 3-bond correlations typically being stronger. The experiment is highly useful for structure elucidation as the longer range correlations allow connectivities between isolated proton spin systems to be identified. The gHMBC experiment is also one of the most sensitive ways to obtain information about quaternary carbon chemical shifts and connectivities. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.
Key parameters

Parameter	Description
Spectral Width (sw)	Set from previously acquired PROTON*
Acquisition time (at)	Set from "Pulse Sequence" panel, controls the resolution in F2, default 0.15s
F1 Nucleus (dn)	Pull- down menu to set F1 nucleus to ¹³ C, ¹⁵ N, or other*
C13 Spectral Width (ppm)	Type in desired chemical shift range for F1 dimension
Scans per t1 increment (nt)	Select typical choices from pull down menu*
t1 Increments (ni)	Select typical choices from pull down menu*- controls the resolution in F1 (minimum ~64)
Multiple-Bond Jnxh (jnxh)	Pull-down menu to set value for the average ⁿ J _{X,H⁻} 8 Hz works well for most molecules
One-Bond suppression	Set from "Pulse Sequence" panel- turn on/off suppression of one-bond correlations- default is on
Steady State (ss)	Set from "Pulse Sequence" panel, turn on/off gradient cleanup between scans

NOTE

5 Heteronuclear 2D multiple-bond - Jn(CH)corr Processing

Processing

Automated processing is turned on by default, and the parameters are set to reasonable values, such that the resulting data after the acquisition usually requires no further adjustment. The "Process" tab/"Basic" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (2k x 1k is the default), as well as a check box to turn on/off linear prediction and a pull-down to control the extent of linear prediction (default is 4*ni). Menus to quickly change the weighting functions in F2/F1 are also present (defaults are gaussian in F1 and sqsinebell in F2). More processing details are found under some of the other "Process" panels, such as the "Default", "Weighting", and "More 2D" panels. It is important to note that this experiment employs mix-mode processing, with the F2 dimension absolute value and F1 phase sensitive mode. This arrangement allows for the best balance of resolution and sensitivity.

- Spectral width (sw) setting transfers from a PROTON if the gHMBC is set up from this experiment. Receiver gain (gain) is usually set to a high value (\geq 30), unless the sample is extremely concentrated or ¹³C-labelled.
- The default number of steady state scans (ss) that are acquired before data acquisition to establish sample equilibrium is 32, which works for most samples. This value is changed on the "Acquisition" panel of the "Acquire" tab if necessary.
- The default parameters use a Grad-90-Grad steady state between scans, which helps cleanup un-relaxed magnetization. This can result in much cleaner spectra, especially when using shorter acquisition times (at) and relaxation delays (d1) (defaults are 0.15s and 1s, respectively).
- The HMBC experiment has a sensitivity advantage (factor of ~ 1.4) over the gHMBC, but due to t1 noise from strong signals such as t-butyl may produce potentially less clean spectra than its gradient counterpart.
- In general, the HMBC-type experiments have the best sensitivity of the Jn(CH)corr experiments- the other experiments provide specialized data for specific information types.

- The jnxh sets the optimal value of the proton-carbon coupling constant for detection. Using smaller values may increase the chances of seeing longer-range correlations, but at the expense of correlations with larger coupling constants, and, more importantly, at the expense of sensitivity loss. The CIGAR experiment is better suited on a reasonably concentrated sample for detecting longer-range correlations from a range of coupling constants, but at the expense of sensitivity.
- The experiment features a 2-step low-pass filter that can eliminate undesired crosspeaks from one bond couplings. Select two coupling constants on the "Pulse Sequence" panel around which one-bond couplings are eliminated (default values are 165 and 130 Hz). These filters are rather narrow-band, however, and if the spread of coupling constants is such that some couplings lie considerably outside these values (for example 115 or 145 Hz), its signals may still be visible in the spectrum. As HMBC-type spectra are recorded without ¹³C decoupling, such signals can usually still be discerned from long-range crosspeaks by their one-bond splitting.
- The gHMBC uses the Shaka6 (S6) pulse to achieve broadband inversion. Parameters relating to this pulse is found on the "Pulse Sequence" tab.
- The gHMBCAD uses adiabatic 180° carbon pulses and invariably gives better results than the gHMBC.

References:

A. Bax, M. F. Summers, J. Am. Chem. Soc. 108 (1986) 2093-2094. (HMBC)

R. E. Hurd, J. Magn. Reson. 87 (1990) 422-428. (Gradient based Coherence Selection)

5 Heteronuclear 2D multiple-bond - Jn(CH)corr gH2BCAD

gH2BCAD

General description and usage

Description:

Two dimensional heteronuclear 2-bond J-correlation spectroscopy with adiabatic 180° X-nuclei pulses and gradient coherence selection.

Usage:

The gH2BCAD experiment is used to acquire a 2-dimensional spectrum to correlate protons with carbons through ${}^{1}\text{H}{-}{}^{1}\text{H}$ vicinal and ${}^{1}\text{H}{-}{}^{13}\text{C}$ one bond coupling connectivity. Although less sensitive than the gHMBCAD, this experiment is useful as supplemental information to distinguish between 2- and 3-bond correlations. Note that the experiment is constant time in F1, so the constant time delay (BigT) determines the maximum number of increments (ni). All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Key parameters

Parameters	Description
Spectral Width (sw)	Set from previously acquired PROTON*
Acquisition time (at)	Set from "Pulse Sequence" panel, controls the resolution in F2, default 0.15s
F1 Nucleus (dn)	Pull- down menu to set F1 nucleus to ¹³ C, ¹⁵ N, or other*
C13 Spectral Width (ppm)	Type in desired chemical shift range for F1 dimension
Scans per t1 increment (nt)	Select typical choices from pull down menu*
Constant Time (BigT)	Type in value for constant time delay- 22ms (default) works for most samples
t1 Increments (ni)	Type in value- controls the resolution in F1 (note maximum allowed from the constant timedelay (BigT)
Steady State (ss)	Set from "Pulse Sequence" panel, turn on/off gradient cleanup between scans
C12-H1 suppression	Set from "Pulse Sequence" panel- turn on/off TANGO-gradient suppression- default is on

NOTE

5 Heteronuclear 2D multiple-bond - Jn(CH)corr Processing

Processing

Automated processing is turned on by default, and the parameters are set to reasonable values, such that the resulting data after the acquisition usually requires no further adjustment. The "Process" tab/"Basic" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (256k x 256k is the default), as well as a check box to turn on/off linear prediction and a pull-down to control the extent of linear prediction (default is 4*ni). Menus to quickly change the weighting functions in F2/F1 are also available (defaults are gaussian in both F1 and F2 dimensions). More processing details are found under some of the other "Process" panels, such as the "Default", "Weighting", and "More 2D" panels.

- Spectral width (sw) setting transfers from a PROTON if the gH2BCAD is set up from this experiment. Receiver gain (gain) is usually set to a high value (≥30), unless the sample is extremely concentrated or ¹³C-labelled.
- The default number of steady state scans (ss) that are acquired before data acquisition to establish sample equilibrium is 32, which works for most samples. This value is changed on the "Acquisition" panel of the "Acquire" tab if necessary.
- The default parameters use a Grad-90-Grad steady state between scans, which helps cleanup un-relaxed magnetization. This can result in much cleaner spectra, especially when using shorter acquisition times (at) and relaxation delays (d1) (defaults are 0.15s and 1s, respectively).
- The gH2BCAD is in principle a gHMQC-COSY type experiment. By this very nature, it can only show 2-bond correlations to protonated carbons but not for quaternary carbons. A 22ms bigT delay is an optimal value for COSY magnetization transfer.
- The gH2BCAD experiment is specialized to show only 2-bond correlations, but it is less sensitive than the gHMBCAD experiment. As such, the gH2BCAD is best used as supplemental information to the gHMBCAD data to distinguish between 2- and 3-bond correlations.

- The gH2BCAD uses adiabatic $180^{\rm o}$ carbon pulses and invariably gives better results than the gH2BC.

References:

N. T. Nyberg, J. O. Duus, O. W. Sorensen, J. Am. Chem. Soc. 127 (2007) 6154-6155. (H2BC)

R. E. Hurd, J. Magn. Reson. 87 (1990) 422-428. (Gradient based Coherence Selection)

E. Kupce, R. Freeman, J. Magn. Reson. Ser. A 117 (1995) 246-256. (Adiabatic Pulses)

5 Heteronuclear 2D multiple-bond - Jn(CH)corr gH2BC

gH2BC

General description and usage

Description:

Two dimensional heteronuclear 2-bond J-correlation spectroscopy with gradient coherence selection.

Usage:

The gH2BC experiment is used to acquire a 2dimensional spectrum to correlate protons with carbons through¹H-¹H vicinal and ¹H-¹³C one-bond coupling connectivity. Although less sensitive than the gHMBC, this experiment is useful as supplemental information to distinguish between 2- and 3-bond correlations. Note that the experiment is constant time in F1, so the constant time delay (BigT) determines the maximum number of increments (ni). All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Key parameters

Parameter	Description
Spectral Width (sw)	Set from previously acquired PROTON*
Acquisition time (at)	Set from "Pulse Sequence" panel, controls the resolution in F2, default 0.15s
F1 Nucleus (dn)	Pull- down menu to set F1 nucleus to ¹³ C, ¹⁵ N, or other*
C13 Spectral Width (ppm)	Type in desired chemical shift range for F1 dimension
Scans per t1 increment (nt)	Select typical choices from pull down menu*
Constant Time (BigT)	Type in value for constant time delay- 22ms (default) works for most samples
t1 Increments (ni)	Type in value- controls the resolution in F1 (note maximum allowed from the constant timedelay (BigT)
Steady State (ss)	Set from "Pulse Sequence" panel, turn on/off gradient cleanup between scans
C12-H1 suppression	Set from "Pulse Sequence" panel- turn on/off TANGO-gradient suppression- default is on

NOTE

5 Heteronuclear 2D multiple-bond - Jn(CH)corr Processing

Processing

Automated processing is turned on by default, and the parameters are set to reasonable values, such that the resulting data after the acquisition usually requires no further adjustment. The "Process" tab/"Basic" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (256k x 256k is the default), as well as a check box to turn on/off linear prediction and a pull-down to control the extent of linear prediction (default is 4*ni). Menus to quickly change the weighting functions in F2/F1 are also available (defaults are gaussian in both F1 and F2 dimensions). More processing details are found under some of the other "Process" panels, such as the "Default", "Weighting", and "More 2D" panels.

- Spectral width (sw) setting transfers from a PROTON if the gH2BC is set up from this experiment. Receiver gain (gain) is usually set to a high value (\geq 30), unless the sample is extremely concentrated or ¹³C-labelled.
- The default number of steady state scans (ss) that are acquired before data acquisition to establish sample equilibrium is 32, which works for most samples. This value is changed on the "Acquisition" panel of the "Acquire" tab if necessary.
- The default parameters use a Grad-90-Grad steady state between scans, which helps cleanup un-relaxed magnetization. This can result in much cleaner spectra, especially when using shorter acquisition times (at) and relaxation delays (d1) (defaults are 0.15s and 1s, respectively).
- The gH2BC is in principle a gHMQC-COSY type experiment. By this very nature, it can only show 2-bond correlations to protonated carbons but not for quaternary carbons. A 22ms bigT delay is an optimal value for COSY magnetization transfer.
- The gH2BC experiment is specialized to show only 2-bond correlations, however it is less sensitive than the gHMBC experiment. As such, the H2BC is best used as supplemental information to the gHMBC data to distinguish between 2- and 3-bond correlations.

References:

N. T. Nyberg, J. O. Duus, O. W. Sorensen, J. Am. Chem. Soc. 127 (2007) 6154-6155. (H2BC)

R. E. Hurd, J. Magn. Reson. 87 (1990) 422-428. (Gradient based Coherence Selection)

5 Heteronuclear 2D multiple-bond - Jn(CH)corr CIGAR

CIGAR

General description and usage

Description:

Two dimensional heteronuclear multiple-bond J-correlation spectroscopy.

Usage:

The CIGAR experiment is used to acquire a 2-dimensional spectrum to correlate protons to carbons over multiple bonds. Although less sensitive than its gHMBC counterpart, this experiment is useful when there is a need to see longer range correlations (>3 bonds and/or with small coupling constants), or when there is a large range of ${}^{n}J_{X,H}$ coupling constants, such as with proton-nitrogen. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Key parameters

Parameter	Description
Spectral Width (sw)	Set from previously acquired PROTON*
Acquisition time (at)	Set from "Pulse Sequence" panel, controls the resolution in F2, default 0.15s
F1 Nucleus (dn)	Pull- down menu to set F1 nucleus to 13 C, 15 N, or other*
C13 Spectral Width (ppm)	Type in desired chemical shift range for F1 dimension
Scans per t1 increment (nt)	Select typical choices from pull down menu*
t1 Increments (ni)	Select typical choices from pull down menu*- controls the resolution in F1 (minimum ~64)
Multiple-Bond jnxh (max/min)	Set values for the maximum/minimum ${}^{\rm n}J_{\rm X, \rm H}$
One-Bond suppression	Set from "Pulse Sequence" panel- turn on/off suppression of one-bond correlations-default is on
Steady State (ss)	Set from "Pulse Sequence" panel, turn on/off gradient cleanup between scans

NOTE

5 Heteronuclear 2D multiple-bond - Jn(CH)corr Processing

Processing

Automated processing is turned on by default, and the parameters are set to reasonable values, such that the resulting data after the acquisition usually requires no further adjustment. The "Process" tab/"Basic" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (2k x 1k is the default), as well as a check box to turn on/off linear prediction and a pull-down to control the extent of linear prediction (default is 4*ni). Menus to quickly change the weighting functions in F2/F1 are also present (defaults are gaussian in F1 and sqsinebell in F2). More processing details are found under some of the other "Process" panels, such as the "Default", "Weighting", and "More 2D" panels. It is important to note that this experiment employs mix-mode processing, with the F2 dimension absolute value and F1 phase sensitive mode This arrangement allows for the best balance of resolution and sensitivity.

- Spectral width (sw) setting transfers from a PROTON if the CIGAR is set up from this experiment. Receiver gain (gain) is usually set to a high value (\geq 30), unless the sample is extremely concentrated or ¹³C-labelled.
- The default number of steady state scans (ss) that are acquired before data acquisition to establish sample equilibrium is 32, which works for most samples. This value is changed on the "Acquisition" panel of the "Acquire" tab if necessary.
- The default parameters use a Grad-90-Grad steady state between scans, which helps cleanup un-relaxed magnetization. This can result in much cleaner spectra, especially when using shorter acquisition times (at) and relaxation delays (d1) (defaults are 0.15s and 1s, respectively).
- The parameter jscaleU and jscaleD (accessed in the "Pulse Sequence" panel) are typically set to 0 for best sensitivity, which are the default values. However, you can set these to non-zero values to achieve homonuclear J dependent peak "skewing" for either improved peak identification in a crowded region (jscaleU) or to differentiate J^2 vs. J^3 crosspeaks (jscaleD).

- The CIGAR experiment is specialized to allow input of a range for ${}^{n}J_{X,H}$. However, it is less sensitive than the gHMBC experiment (at least by a factor of 2). As such, the CIGAR is best used under circumstances where there is a large range for the ${}^{n}J_{X,H}$ coupling constants, such as for proton-nitrogen. The CIGAR experiment may also be used when the sample is reasonably concentrated and there is a need to see longer range correlations (for example, >3-bond).
- The experiment features a 2-step low-pass filter that can eliminate undesired crosspeaks from one-bond couplings. Select two coupling constants on the "Pulse Sequence" panel around which one-bond couplings are eliminated (default values are 165 and 130 Hz). These filters are rather narrow-band, however, and if the spread of coupling constants is such that some couplings lie considerably outside these values (for example 115 or 145 Hz), its signals may still be visible in the spectrum. As HMBC-type spectra are recorded without ¹³C decoupling, such signals can usually still be discerned from long-range crosspeaks by their one-bond splitting.
- The CIGARAD uses adiabatic 180° carbon pulses and invariably gives better results than the CIGAR.

References:

C. E. Hadden, G. E. Martin, V. V. Krishnamurthy, Magn. Reson. Chem. 38 (2000) 143-147. (CIGAR)

M. Kline, S. Cheatham, Magn. Reson. Chem. 41 (2003) 307-314. (15 N-optimized CIGAR)

5 Heteronuclear 2D multiple-bond - Jn(CH)corr CIGARAD

CIGARAD

General description and usage

Description:

Two dimensional heteronuclear multiple-bond J-correlation spectroscopy with adiabatic 180° X-nuclei pulses.

Usage:

The CIGARAD experiment is used to acquire a 2-dimensional spectrum to correlate protons to carbons over multiple bonds. Although less sensitive than its gHMBC counterpart, this experiment is useful when there is a need to see longer range correlations (>3 bonds and/or with small coupling constants), or when there is a large range of ${}^{n}J_{X,H}$ coupling constants, such as with proton-nitrogen. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Key parameters

Parameter	Description
Spectral Width (sw)	Set from previously acquired PROTON*
Acquisition time (at)	Set from "Pulse Sequence" panel, controls the resolution in F2, default 0.15s
F1 Nucleus (dn)	Pull- down menu to set F1 nucleus to 13 C, 15 N, or other*
C13 Spectral Width (ppm)	Type in desired chemical shift range for F1 dimension
Scans per t1 increment (nt)	Select typical choices from pull down menu*
t1 Increments (ni)	Select typical choices from pull down menu*- controls the resolution in F1 (minimum ~64)
Multiple-Bond jnxh (max/min)	Set values for the maximum/minimum ${}^{\rm n}J_{\rm X, H}$
One-Bond suppression	Set from "Pulse Sequence" panel- turn on/off suppression of one-bond correlations-default is on
Steady State (ss)	Set from "Pulse Sequence" panel, turn on/off gradient cleanup between scans

NOTE

5 Heteronuclear 2D multiple-bond - Jn(CH)corr Processing

Processing

Automated processing is turned on by default, and the parameters are set to reasonable values, such that the resulting data after the acquisition usually requires no further adjustment. The "Process" tab/"Basic" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (2k x 1k is the default), as well as a check box to turn on/off linear prediction and a pull-down to control the extent of linear prediction (default is 4*ni). Menus to quickly change the weighting functions in F2/F1 are also present (defaults are gaussian in F1 and sqsinebell in F2). More processing details are found under some of the other "Process" panels, such as the "Default", "Weighting", and "More 2D" panels. It is important to note that this experiment employs mix-mode processing, with the F2 dimension absolute value and F1 phase sensitive mode. This arrangement allows for the best balance of resolution and sensitivity.

- Spectral width (sw) setting transfers from a PROTON if the CIGARAD is set up from this experiment. Receiver gain (gain) is usually set to a high value (≥30), unless the sample is extremely concentrated or ¹³C-labelled.
- The default number of steady state scans (ss) that are acquired before data acquisition to establish sample equilibrium is 32, which works for most samples. This value is changed on the "Acquisition" panel of the "Acquire" tab if necessary.
- The default parameters use a Grad-90-Grad steady state between scans, which helps cleanup un-relaxed magnetization. This can result in much cleaner spectra, especially when using shorter acquisition times (at) and relaxation delays (d1) (defaults are 0.15s and 1s, respectively).
- The parameter jscaleU and jscaleD (accessed in the "Pulse Sequence" panel) are typically set to 0 for best sensitivity, which are the default values. However, you can set these to non-zero values to achieve homonuclear J dependent peak "skewing" for either improved peak identification in a crowded region (jscaleU) or to differentiate J^2 vs. J^3 crosspeaks (jscaleD).

- The CIGARAD experiment is specialized to allow input of a range for ${}^{n}J_{X,H}$, however it is less sensitive than the gHMBC experiment (at least by a factor of 2). As such, the CIGARAD is best used under circumstances where there is a large range for the ${}^{n}J_{X,H}$ coupling constants, such as for proton-nitrogen. The CIGARAD experiment may also be used when the sample is reasonably concentrated and there is a desire to see longer range correlations (for example, >3-bond).
- The experiment features a 2-step low-pass filter that can eliminate undesired crosspeaks from one-bond couplings. Select two coupling constants on the "Pulse Sequence" panel around which one-bond couplings are eliminated (default values are 165 and 130 Hz). These filters are rather narrow-band, however, and if the spread of coupling constants is such that some couplings lie considerably outside these values (for example 115 or 145 Hz), its signals may still be visible in the spectrum. As HMBC-type spectra are recorded without ¹³C decoupling, such signals can usually still be discerned from long-range crosspeaks by their one-bond splitting.
- The CIGARAD uses adiabatic 180° carbon pulses and invariably gives better results than the CIGAR.

References:

C. E. Hadden, G. E. Martin, V. V. Krishnamurthy, Magn. Reson. Chem. 38 (2000) 143-147. (CIGAR)

C. E. Hadden, Magn. Reson. Chem. 43 (2005) 330-333. (Adiabatic Pulses)

5 Heteronuclear 2D multiple-bond - Jn(CH)corr HMBC

HMBC

General description and usage

Description:

Two dimensional heteronuclear multiple-bond J-correlation spectroscopy with gradient coherence selection.

Usage:

The HMBC experiment is used to acquire a 2-dimensional spectrum to correlate protons with carbons, usually over 2-3 bonds with the 3-bond correlations typically being stronger. The experiment is highly useful for structure elucidation as the longer range correlations allow connectivities between isolated proton spin systems to be identified. The HMBC experiment is also one of the most sensitive ways to obtain information about quaternary carbons chemical shifts and connectivities. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Key parameters

Parameter	Description
Spectral Width (sw)	Set from previously acquired PROTON*
Acquisition time (at)	Set from "Pulse Sequence" panel, controls the resolution in F2, default 0.15s
F1 Nucleus (dn)	Pull- down menu to set F1 nucleus to ¹³ C, ¹⁵ N, or other*
C13 Spectral Width (ppm)	Type in desired chemical shift range for F1 dimension
Scans per t1 increment (nt)	Select typical choices from pull down menu*
t1 Increments (ni)	Select typical choices from pull down menu*- controls the resolution in F1 (minimum ~64)
Multiple-Bond Jnxh (jnxh)	Pull-down menu to set value for the average ${}^nJ_{X,H}$ - 8 Hz works well for most molecules
One-Bond suppression	Set from "Pulse Sequence" panel- turn on/off suppression of one-bond correlationson/off- default is on
Steady State (ss)	Set from "Pulse Sequence" panel, turn on/off gradient cleanup between scans

NOTE

5 Heteronuclear 2D multiple-bond - Jn(CH)corr Processing

Processing

Automated processing is turned on by default, and the parameters are set to reasonable values, such that the resulting data after the acquisition usually requires no further adjustment. The "Process" tab/"Basic" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (2k x 1k is the default), as well as a check box to turn on/off linear prediction and a pull-down to control the extent of linear prediction (default is 4*ni). Menus to quickly change the weighting functions in F2/F1 are also present (defaults are gaussian in F1 and sqsinebell in F2). More processing details are found under some of the other "Process" panels, such as the "Default", "Weighting", and "More 2D" panels. It is important to note that this experiment employs mix-mode processing, with the F2 dimension absolute value and F1 phase sensitive mode. This arrangement allows for the best balance of resolution and sensitivity.

- Spectral width (sw) setting transfers from a PROTON if the HMBC is set up from this experiment. Receiver gain (gain) is usually set to a high value (\geq 30), unless the sample is extremely concentrated or ¹³C-labelled.
- The default number of steady state scans (ss) that are acquired before data acquisition to establish sample equilibrium is 32, which works for most samples. This value is changed on the "Acquisition" panel of the "Acquire" tab if necessary.
- The default parameters use a Grad-90-Grad steady state between scans, which helps cleanup un-relaxed magnetization. This can result in much cleaner spectra, especially when using shorter acquisition times (at) and relaxation delays (d1) (defaults are 0.15s and 1s, respectively).
- The HMBC experiment has a sensitivity advantage (factor of ~1.4) over the gHMBC, but due to t1 noise from strong signals such as t-butyl, may produce potentially less clean spectra than its gradient counterpart. Invariably the gradient coherence selected variants (such as gHMBC or gHMBCAD) are preferred over HMBC.

- The jnxh sets the optimal value of the proton-carbon coupling constant for detection. Using smaller values may increase the chances of seeing longer-range correlations, but at the expense of correlations with larger coupling constants, and, more importantly, at the expense of sensitivity loss.
- The experiment features a 2-step low-pass filter that can eliminate undesired crosspeaks from one-bond couplings. Select two coupling constants on the "Pulse Sequence" panel around which one-bond couplings are eliminated (default values are 165 and 130 Hz). These filters are rather narrow-band, however, and if the spread of coupling constants is such that some couplings lie considerably outside these values (for example 115 or 145 Hz), its signals may still be visible in the spectrum. As HMBC-type spectra are recorded without ¹³C decoupling, such signals can usually still be discerned from long-range crosspeaks by their one-bond splitting.

References:

A. Bax, M. F. Summers, J. Am. Chem. Soc. 108 (1986) 2093-2094. (HMBC)

5 Heteronuclear 2D multiple-bond - Jn(CH)corr gHMBCmeAD

gHMBCmeAD

General description and usage

Description:

Two dimensional heteronuclear multiple-bond J-correlation spectroscopy with multiplicity-editing (adiabatic 180° X-nuclei pulses and gradient coherence selection).

Usage:

The gHMBCmeAD experiment is used to acquire a 2-dimensional spectrum to correlate protons to carbons, usually over 2-3 bonds with the 3-bond correlations typically being stronger. The experiment is highly useful for structure elucidation as the longer range allows connectivities between isolated proton spin systems to be confirmed. The gHMBCmeAD experiment is a multiplicity edited version of gHMBCAD. This experiment is acquired as an array of 2 spectra and needs to be processed in two different ways to generate the edited 2D spectra. For structure elucidation, carbon chemical shifts are particularly useful as they are highly sensitive to local functional groups and can be reliably predicted with software. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Key parameters

Parameters	Description
Spectral Width (sw)	Set from previously acquired PROTON*
Acquisition time (at)	Set from "Pulse Sequence" panel, controls the resolution in F2, default 0.15s
F1 Nucleus (dn)	Pull- down menu to set F1 nucleus to ¹³ C, ¹⁵ N, or other*
C13 Spectral Width (ppm)	Type in desired chemical shift range for F1 dimension
Scans per t1 increment (nt)	Select typical choices from pull down menu*
t1 Increments (ni)	Select typical choices from pull down menu*- controls the resolution in F1 (minimum ~64)
Multiple-Bond Jnxh (jnxh)	Pull-down menu to set value for the average ⁿ J _{X,H} - 8 Hz works well for most molecules
One-Bond suppression	Set from "Pulse Sequence" panel- turn on/off suppression of one-bond correlations- default is on
Steady State (ss)	Set from "Pulse Sequence" panel, turn on/off gradient cleanup between scans

NOTE

5 Heteronuclear 2D multiple-bond - Jn(CH)corr

Processing

Processing

The multiplicity- editing feature requires running an array of two spectra (default setup). The "Process" tab/"Default" panel has three buttons under the "Transform" heading to select the desired subspectrum. The "Process" tab/"Basic" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (2k x 1k is the default), as well as a check box to turn on/off linear prediction and a pull-down to control the extent of linear prediction (default is 4*ni). Menus to quickly change the weighting functions in F2/F1 are also present (defaults are gaussian in F1 and sqsinebell in F2). More processing details are found under some of the other "Process" panels, such as the "Default", "Weighting", and "More 2D" panels. It is important to note that this experiment employs mix-mode processing, with the F2 dimension absolute value and F1 phase sensitive mode. This arrangement allows for the best balance of resolution and sensitivity.

Tips, tricks, and next steps

• Spectral width (sw) setting transfers from a PROTON if the gHMBCmeAD is set up from this experiment. Receiver gain (gain) is usually set to a high value (\geq 30), unless the sample is extremely concentrated or ¹³C-labelled.

- The default number of steady state scans (ss) that are acquired before data acquisition to establish sample equilibrium is 32, which works for most samples. This value is changed on the "Acquisition" panel of the "Acquire" tab if necessary.
- The default parameters use a Grad-90-Grad steady state between scans, which helps cleanup un-relaxed magnetization. This can result in much cleaner spectra, especially when using shorter acquisition times (at) and relaxation delays (d1) (defaults are 0.15s and 1s, respectively).
- The multiplicity-editing feature uses the CRISIS technique that relies on a hypothetical relationship between one-bond coupling constant and carbon chemical shift. Carbons with coupling constants that deviate significantly from this relationship result in imperfect editing.
- As the gHMBCmeAD is acquired as an array of two spectra, it takes twice as long to acquire and there is a small sensitivity loss with the multiplicity-editing.
- The experiment features a 2-step low-pass filter that can eliminate undesired crosspeaks from one-bond couplings. Select two coupling constants on the "Pulse Sequence" panel around which one-bond couplings are eliminated (default values are 165 and 130 Hz). These filters are rather narrow-band, however, and if the spread of coupling constants is such that some couplings lie considerably outside these values (for example 115 or 145 Hz), its signals may still be visible in the spectrum. As HMBC-type spectra are recorded without ¹³C decoupling, such signals can usually still be discerned from long-range crosspeaks by their one-bond splitting.

References:

A. Bax, M. F. Summers, J. Am. Chem. Soc. 108 (1986) 2093-2094. (HMBC)

R. E. Hurd, J. Magn. Reson. 87 (1990) 422-428. (Gradient based Coherence Selection)

A. J. Benie, O. W. Sorensen, Magn. Reson. Chem. 44 (2006) 739-743. (gHMBCme)

R. D. Boyer, R. Johnson, K. Krishnamurthy, J. Magn. Reson. 165 (2003) 253-259 (CRISIS)

5 Heteronuclear 2D multiple-bond - Jn(CH)corr

Heteronuclear 2D multiple-bond - Jn(CH)corr 5 Tips, tricks, and next steps

5 Heteronuclear 2D multiple-bond - Jn(CH)corr gHMBCRELAY

gHMBCRELAY

General description and usage

Description:

Two dimensional heteronuclear spectroscopy for the simultaneous detection of $^2J_{C,H}$ and $^nJ_{C,H}$ with adiabatic 180° X-nuclei pulses and gradient coherence selection.

Usage:

The gHMBCRELAY experiment is used to acquire a 2-dimensional spectrum to correlate protons to carbons over multiple bonds. Although less sensitive than the gHMBCAD, this experiment is useful as supplemental information to distinguish between 2- and 3-bond correlations, as the 2-bond correlations are created through a separate pathway and may be separated into a subspectrum. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Key parameters

Parameters	Description
Spectral Width (sw)	Set from previously acquired PROTON*
Acquisition time (at)	Set from "Pulse Sequence" panel, controls the resolution in F2, default 0.15s
F1 Nucleus (dn)	Pull- down menu to set F1 nucleus to ¹³ C, ¹⁵ N, or other*
C13 Spectral Width (ppm)	Type in desired chemical shift range for F1 dimension
Scans per t1 increment (nt)	Select typical choices from pull down menu*
t1 Increments (ni)	Select typical choices from pull down menu*- controls the resolution in F1 (minimum ~64)
Multiple-Bond Jnxh (jnxh)	Pull-down menu to set value for the average ⁿ J _{X,H} - 8 Hz works well for most molecules
Homonuclear Jn(HH)	Pull-down menu to set value for the optimized ${}^{\rm N}J_{\rm H,H}$
Steady State (ss)	Set from "Pulse Sequence" panel, turn on/off gradient cleanup between scans

NOTE

5 Heteronuclear 2D multiple-bond - Jn(CH)corr Processing

Processing

Automated processing is turned on by default, and the parameters are set to reasonable values, such that the resulting data after the acquisition usually requires no further adjustment. The "Process" tab/"Default" panel has three buttons under the "Transform" heading to select the desired subspectrum. The "Process" tab/"Basic" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (1k x 1k is the default), as well as a check box to turn on/off linear prediction and a pull-down to control the extent of linear prediction (default is 4*ni). Menus to quickly change the weighting functions in F2/F1 are also present (defaults are squared sinebells). More processing details are found under some of the other "Process" panels, such as the "Default", "Weighting", and "More 2D" panels.

Tips, tricks, and next steps

- Spectral width (sw) setting transfers from a PROTON if the gHMBCRELAY is set up from this experiment. Receiver gain (gain) is usually set to a high value (\geq 30), unless the sample is extremely concentrated or ¹³C-labelled.
- The default number of steady state scans (ss) that are acquired before data acquisition to establish sample equilibrium is 32, which works for most samples. This value is changed on the "Acquisition" panel of the "Acquire" tab if necessary.
- The default parameters use a Grad-90-Grad steady state between scans, which helps cleanup un-relaxed magnetization. This can result in much cleaner spectra, especially when using shorter acquisition times (at) and relaxation delays (d1) (defaults are 0.15s and 1s, respectively).
- The gHMBCRELAY experiment is specialized to be able to show subspectra containing only 2-bond H-C correlations, or >2-bond correlations, however it is less sensitive than the gHMBCAD experiment. As such, the gHMBCRELAY is best used only when it is important to be able to distinguish between 2- and 3-bond correlations.

References:

T. Sprang, P. Bigler, Magn. Reson. Chem. 42 (2004) 55-60. (HMBCRELAY)

R. E. Hurd, J. Magn. Reson. 87 (1990) 422-428. (Gradient based Coherence Selection)

M. R. Bendall, M. Garwood, K. Ugurbill, D. T. Pegg, Magn. Reson. Med. 4 (1987) 493-499. (Adiabatic Pulses)

5 Heteronuclear 2D multiple-bond - Jn(CH)corr

Agilent VnmrJ 4 Experiment Guide

6 Selective 1D - (H)Sel1D

(H)Sel1D Tab 218 NOESY1D 220 ROESY1D 226 TOCSY1D 232 zTOCSY1D 236 selexcit 240 stepNOESY1D 244

6 Selective 1D - (H)Sel1D (H)Sel1D Tab

(H)Sel1D Tab

This tab of the experiment selector includes the set of 1D experiments performed on small, user-defined bands or resonances of the proton spectrum using selective pulses. They are useful to obtain targeted information about single resonances or small areas of a complicated proton spectrum. Included are J-coupled experiments (TOCSY1D and zTOCSY1D), through-space experiments (NOESY1D, ROESY1D), as well as a simple selective excitation experiment (selexcit). The zTOCSY1D contains a z-filter to suppress zero-quantum artifacts and, in general, give better results than TOCSY1D. The stepNOESY1D is a specialized experiment that first performs a TOCSY 1D and then a second selective NOESY1D excitation off one of the TOCSY relayed peaks.
The most direct way to set up these experiments is to first acquire a proton spectrum and then choose the appropriate selective 1D experiment. The proton spectrum can then be used as a reference to select the desired peaks/regions for the experiment. Alternatively, if the regions are known *a priori*, the selective 1D experiment can be chosen initially and the regions entered manually.

Experiment Selector 🛛 🗣 🗧			
HF_Expts (HC)Crisis2 Hadamard			
Sel2D Dosy 2	2D Dosy 3D		
Jn(CH)corr (H)Sel1	LD (HC)HetToxys		
Service (HH)Homo2D	JSpectra J1(CH)corr		
Common Std 1D (0	CC)corr System Studies		
NOESY1D	ROESY1D		
TOCSY1D	zTOCSY1D		
selexcit	stepNOESY1D		

NOESY1D

General description and usage

Description:

A pulse sequence to acquire a 1D NOESY dataset with a selective pulse to obtain NOE information from a specific frequency.

Usage:

The NOESY1D experiment is an important tool for structure elucidation as it does not require through-bond coupling connectivity for correlations, rather the NOE (Nuclear Overhauser Effect) interaction is seen between protons that are close in space (typically <5 Å). As such the NOESY1D experiment is often used to help determine stereochemistry for rigid ring systems, or to confirm attachments between proximal (but non-coupled) portions of a molecule. The selective NOESY1D experiment has an advantage over the 2D NOESY version for simplifying complicated spectra with a lot of overlapping peaks. This experiment is most easily set up from a previously acquired PROTON spectrum so the frequencies and bandwidths for NOE analysis may be chosen interactively with the cursor. All parameters are set from the "Acquire" tab/"Default" panel unless otherwise specified.

Parameters	Description	
Solvent (solvent)	Set from "Start" tab/"Standard" panel	
Spectral Width(sw)	Set from previously acquired PROTON*	
Number of scans(nt)	Select typical choices from pull down menu*	
NOE Mixing time (mixT)	Select from pull down menu- 500ms works well for most small molecules*	
Run a mix=0 spectrum	Check box to acquire a control spectrum with a mixing time of Oms- creates an array for mixT	
No., ppm, width of selective frequencies	Select number of frequencies from the drop down menu. Enter frequency position(s) and bandwidth(s) in the entry boxes.	
ZQ filter	Check box on the "Pulse Sequence" panel- zero quantum filter for artifact suppression. Strongly recommended - default is on.	

NOTE

You can type specific values for these parameters manually in the appropriate boxes on the "Acquisition" or "Pulse Sequence" panels.

Defaults Acquisition	Experiment: NOESY1D Solvent: d2o	Observe: H1 Decoupler: C13
Acquisition Pulse Sequence PRESAT WET Channels Flags Future Actions Overview	Acquisition Options Number of scans 64 • ms NOE Mixing time 500 • ms Run a mix=0 spectrum	Receiver Gain (dB): 30
	No. of Selective Frequencies (max: 5): 0 ▼ Selective Freq: 0.00 0.00 0.00 0.00 ppm Selective width: 10.0 0.0 0.0 0.0 Hz OR Autoestimate from spectrum	n

6 Selective 1D - (H)Sel1D Processing

Processing

Same processing as for standard PROTON spectrum, except that manual phasing may be required as the NOE peaks may be negative for smaller molecules. A typical processing apodization choice which provides S/N enhancement (at the expense of resolution) for a 1D spectrum is line broadening, with an lb setting from ~0.5-1 Hz. A suggested optimal value is line broadening equal to the peak linewidth at half-height. Other types of apodization are available under the "Process" tab on the "Weighting" panel.

Tips, tricks, and next steps

• Choosing the NOESY1D experiment from a previously acquired PROTON data set allows for interactive selection of the peaks for NOE analysis, and the "Default" panel appears differently (see below). Place the cursor(s) on or around the peak and click <u>Select</u>. Repeat for additional peaks. Results are best if isolated peaks are chosen for correlation analysis. It is advisable not to make the widths of the selected peak too narrow as this creates shaped pulses with long durations, which, in turn, can result in some sensitivity loss. The peak of interest does not necessarily have to be centered in the selection window if placing it off-center avoids interference from nearby resonances.

- A mixing time of 500ms is a good starting place for most small molecules. Very small molecules and/or weak NOE interactions may require longer mixing times (up to ~1s). Longer mixing times, however, increase the possibility of spin diffusion for larger molecules, a situation where the magnetization is transferred through space, and then through coupling, resulting in spurious correlations between protons. The NOE correlation is confirmed by acquiring a build-up curve, whereby the mixing time is slowly increased in 50-100ms increments until the NOE intensity ceases to increase and levels off. This is the optimal mixing time. In addition, the slope of such a build up curve can be used to determine bond distances between selected spin pairs (using methods such as PANIC).
- Molecules with multiple ring systems or a ring system combined with a long carbon chain may require different optimal mixing times for different parts of the molecule. In general, more flexible parts of the molecule require longer mixing times and more rigid, shorter.
- The NOESY1D contains zero quantum suppression element to suppress artifacts (typically antiphase in nature and interfering with spectral analysis), which is switched on by default.
- The sensitivity of the NOESY1D experiment is *not* equivalent to a PROTON, nor is an 8-scan NOESY1D equivalent to an 8-scan, 256-increment NOESY. Do not hesitate to acquire this experiment with a larger number of scans, particularly for weak/long-distance NOEs.
- When acquiring the NOESY1D with a larger number of scans, it is advisable to acquire a mixN=0 experiment with the *same number of scans* (using <u>Panamic-Operation</u>), to see peaks that appear from any potential pulse imperfections, so as not to mistake them for NOE correlations. The mixN=0 spectrum can also be used to confirm the selective excitation occurred as expected, verifying a result from the mixN0 spectrum with no observed NOE.
- Medium-sized molecules (MW ~700-1000 depending on the molecule and spectrometer frequency) can exhibit zero or very small NOEs. Consider acquiring a ROESY1D for these molecules. Alternatively one may consider (i) choosing a more viscous solvent such as d₆-DMSO or d₆-DMSO with ~10-20% D₂O (this results in slower molecular tumbling and hence generates a positive NOE enhancement like larger molecules), (ii) selecting a lower temperature (if the solvent allows it), or (iii) running the experiment on a spectrometer with higher field strength (if available).

References:

S. Macura, Y. Huang, D. Suter, R. R. Ernst, J. Magn. Reson. 43 (1981) 259-281. (NOESY)

K. Stott, J. Stonehouse, J. Keeler, T. L. Hwang, A. J. Shaka, J. Am. Chem. Soc. 117 (1995) 4199-4200. (Excitation Sculpting)

M. J. Trippleton, J. Keeler, Angew. Chem. Int. Ed. 42 (2003) 3938-3941. (Zero Quantum Suppression)

Selective 1D - (H)Sel1D 6 Tips, tricks, and next steps

6 Selective 1D - (H)Sel1D ROESY1D

ROESY1D

General description and usage

Description:

A pulse sequence to acquire a 1D ROESY dataset with a selective pulse to obtain ROE information from a specific frequency.

Usage:

The ROESY1D experiment is an important tool for structure elucidation as it does not require through-bond coupling connectivity for correlations, rather the ROE (rotating frame Overhauser effect) interaction is seen between protons that are close in space (typically <4 Å). As such, the ROESY1D experiment if often used to help determine stereochemistry for rigid ring systems, or to confirm attachments between proximal but non-coupled portions of a molecule. The selective ROESY1D experiment has an advantage over the 2D ROESY version for simplifying complicated spectra with a lot of overlapping peaks. This experiment is most easily set up from a previously acquired PROTON spectrum so the frequencies and bandwidths for ROE analysis may be chosen interactively with the cursor. All parameters are set from the "Acquire" tab/"Default" panel unless otherwise specified.

Parameter	Description	
Solvent (solvent)	Set from "Start" tab/"Standard" panel	
Spectral Width(sw)	Set from previously acquired PROTON*	
Number of scans(nt)	Select typical choices from pull down menu*	
SpinLock time	Select from pull down menu- 200ms works well for most small molecules* DO NOT EXCEED 500ms	
Run a mix=0 spectrum	Check box to acquire a control spectrum with a mixing time of Oms- creates an array	
No., ppm, width of selective frequencies	Select number of frequencies from the drop down menu. Enter frequency position(s) and bandwidth(s) in the entry boxes	
ZQ filter	Check box on the "Pulse Sequence" panel- zero quantum filter for artifact suppression. Strongly recommended- default is on.	

NOTE

You can type specific values for these parameters manually in the appropriate boxes on the "Acquisition" or "Pulse Sequence" panels.

Defaults Acquisition	Experiment: ROESY1D Solvent: d2o	Observe: H1 Decoupler: C13
Acquisition Pulse Sequence PRESAT WET Channels Flags Future Actions Overview	Acquisition Options Number of scans 64 SpinLock time 200 Run a mix=0 spectrum	Receiver Gain (dB): 30
	No. of Selective Frequencies (max: 5): 0 Selective Freq: 0.00 0.00 0.00 0.00 ppn Selective width: 10.0 0.0 0.00 0.00 Hz OR Autoestimate from spectrum	n

Processing

Same processing as for standard PROTON spectrum, except that manual phasing may be required, as the ROE peaks are negative. A typical processing apodization choice which provides S/N enhancement (at the expense of resolution) for a 1D spectrum is line broadening, with an lb setting from ~0.5-1 Hz. A suggested optimal value is line broadening equal to the peak linewidth at half-height. Other types of apodization are available under the "Process" tab on the "Weighting" panel.

Tips, tricks, and next steps

• Choosing the ROESY1D experiment from a previously acquired PROTON data set allows for interactive selection of the peaks for ROE analysis, and the "Default" panel appears differently (see below). Place the cursor(s) on or around the peak and click <u>select</u>. Repeat for additional peaks. Results are best if the isolated peaks are chosen for correlation analysis. It is advisable not to make the widths of the selected peak too narrow as this creates shaped pulses with long durations, which, in turn, can result in some sensitivity loss. The peak of interest does not necessarily have to be centered in the selection window if placing it off-center avoids interference from nearby resonances.

- A mixing time of 200ms is a good starting place for most small molecules. Very weak ROE interactions may require longer mixing times (up to \sim 500ms), but keep the mixing time shorter as longer spinlocks may result in sample heating. It is a good idea not to exceed a 500ms spinlock.
- Because the mixing time for the ROESY1D is limited, weaker correlations may not be observable. The ROESY1D is the experiment of choice over NOESY1D for medium-sized molecules (MW ~800-1000 depending on the molecule and spectrometer frequency), as they can exhibit zero or very small NOEs. One may consider running NOESY1D experiments (which can be run with longer mixing times) by (i) choosing a more viscous solvent such as d_6 -DMSO or d_6 -DMSO with ~10-20% D₂O (this results in slower molecular tumbling and hence generates a positive NOE enhancement like larger molecules), (ii) selecting a lower temperature (if the solvent allows it), or (iii) running the experiment on a spectrometer with higher field strength (if available).
- The ROESY1D contains zero quantum suppression element to suppress artifacts (typically antiphase in nature and interfering with spectral analysis), which is switched on by default.
- The sensitivity of the ROESY1D experiment is *not* equivalent to a PROTON, nor is an 8-scan ROESY1D equivalent to an 8-scan, 256-increment ROESY. Do not hesitate to acquire this experiment with a larger number of scans, particular for weak/long-distance ROEs.
- When acquiring the ROESY1D with a larger number of scans, it is advisable to acquire a mixR=0 experiment with the same number of scans (using planamk=0 spectrum planamk), to see peaks that appear from any potential pulse imperfections so as not to mistake them for ROE correlations. The mixR=0 spectrum can also be used to confirm the selective excitation occurred as expected, verifying a result from the mixR0 spectrum with no observed ROE.
- Sensitivity permitting, the slope of a ROESY1D buildup curve (by an array of mixing time) can be equally used as a NOESY1D buildup curve to determine bond distances between selected spin pairs. (using methods such as PANIC)

References:

A. Bax, D. G. Davis, J. Magn. Reson. 63 (1985) 207-213. (ROESY)

Tips, tricks, and next steps

K. Stott, J. Stonehouse, J. Keeler, T. L. Hwang, A. J. Shaka, J. Am. Chem. Soc. 117 (1995) 4199-4200. (Excitation Sculpting)

M. J. Trippleton, J. Keeler, Angew. Chem. Int. Ed. 42 (2003) 3938-3941. (Zero Quantum Suppression)

Selective 1D - (H)Sel1D 6 Tips, tricks, and next steps

TOCSY1D

General description and usage

Description:

A pulse sequence to acquire a 1D TOCSY dataset with a selective pulse to obtain coupling information from a specific frequency.

Usage:

The TOCSY1D experiment is an important tool for structure elucidation as it can show all protons in a chosen spin system. The selective TOCSY1D experiment has an advantage over the 2D TOCSY version for simplifying complicated spectra with invariably shorter total experiment time. If one proton in a given spin system is resolved, selecting this proton for TOCSY1D analysis produces an edited 1D spectrum containing only the resonances in this spin system. This experiment is most easily set up from a previously acquired PROTON spectrum so the frequencies and bandwidths for TOCSY1D analysis may be chosen interactively with the cursor. All parameters are set from the "Acquire" tab/"Default" panel unless otherwise specified.

Parameter	Description	
Solvent (solvent)	Set from "Start" tab/"Standard" panel	
Spectral Width(sw)	Set from previously acquired PROTON*	
Number of scans(nt)	Select typical choices from pull down menu*	
SpinLock time	Select from pull down menu- 80ms works best for large spin systems*	
Run a mix=0 spectrum	Check box to acquire a control spectrum with a mixing time of Oms- creates an array	
No., ppm, width of selective frequencies	Select number of frequencies from the drop down menu. Enter frequency positions bandwidth(s) in the entry boxes	
SpinLock Pattern	Pull-down menu on the "Pulse Sequence" panel- MLEV17 or DIPSI2 works well for small molecules, clean MLEV17 is a good choice for large molecules	

NOTE

You can type specific values for these parameters manually in the appropriate boxes on the "Acquisition" or "Pulse Sequence" panels.

6 Selective 1D - (H)Sel1D Processing

Processing

Same processing as for standard PROTON spectrum. A typical processing apodization choice which provides S/N enhancement (at the expense of resolution) for a 1D spectrum is line broadening, with an lb setting from $^{\circ}0.5$ -1 Hz. A suggested optimal value is line broadening equal to the peak linewidth at half-height. Other types of apodization are available under the "Process" tab on the "Weighting" panel.

Tips, tricks, and next steps

• Choosing the TOCSY1D experiment from a previously acquired PROTON data set allows for interactive selection of the peaks for analysis, and the "Default" panel appears differently (see below). Place the cursor(s) on or around the peak and click **Select**. Repeat for additional peaks. Results are best if the more isolated peaks are chosen for correlation analysis. It is advisable not to make the widths of the selected peak too narrow as this creates shaped pulses with long durations, which, in turn, can result in some sensitivity loss. The peak of interest does not necessarily have to be centered in the selection window if placing it off-center prevents interference from nearby resonances.

• The zTOCSY1D experiment contains a zero-quantum filter to suppress artifacts and often gives better results than the TOCSY1D.

- The spinlock time ultimately controls how far along the spin system the correlations extend. Use spinlock durations exceeding 150ms with caution, as this can result in sample heating. The efficiency of the TOCSY transfer is directly proportional to the size of the coupling constants between the pairs of protons. To show primarily vicinal and geminal couplings (such as for a COSY), select a shorter spinlock time, for example, 30ms or less.
- The MLEV17 and DIPSI2 spinlock patterns are good choices for small molecules and the DIPSI3 and clean MLEV for larger molecules.
- The sensitivity of the TOCSY1D experiment is <u>not</u> equivalent to a PROTON, nor is an 8-scan TOCSY1D equivalent to an 8-scan, 256-increment TOCSY. Do not hesitate to acquire this experiment with a larger number of scans, particular for weak couplings or extended spin systems.
- When acquiring the TOCSY1D with a larger number of scans, it is advisable to acquire a mixT=0 experiment, to see peaks that appear from any potential pulse imperfections, so as not to mistake them for TOCSY correlations. The mixT=0 spectrum can also be used to confirm the selective excitation occurred as expected, verifying a result from the mixT0 spectrum with no observed TOCSY correlation.
- It is also advisable to run a mixT=0 "reference" spectrum (using **PROM & MAX-O Spectrum P SCARE**), when TOCSY1D is acquired with longer spinlock mixing time. Unlike typical NOESY1D or ROESY1D, the selected resonance (i.e., the originally selected peak) may have intensity similar to the TOCSY peak and hence may not be obviously discernable.

References:

A. Bax, D. G. Davis, J. Magn. Reson. 63 (1985) 355-360. (TOCSY with MLEV17)

J. Cavanaugh, M. Rance, J. Magn. Reson. 96 (1992) 670-678. (TOCSY with DIPSI2)

K. Stott, J. Stonehouse, J. Keeler, T. L. Hwang, A. J. Shaka, J. Am. Chem. Soc. 117 (1995) 4199-4200. (Excitation Sculpting)

zTOCSY1D

General description and usage

Description:

A pulse sequence to acquire a 1D zTOCSY dataset with a selective pulse to obtain coupling information from a specific frequency.

Usage:

The zTOCSY1D experiment is an important tool for structure elucidation as it can show all protons in a chosen spin system. The selective zTOCSY1D experiment has an advantage over the 2D zTOCSY version for simplifying complicated spectra with a lot of overlapping peaks with invariably shorter total experiment time. If one proton in a given spin system is resolved, selecting this proton for zTOCSY1D analysis produces an edited 1D spectrum containing only the resonances in this spin system. This experiment is most easily set up from a previously acquired PROTON spectrum so the frequencies and bandwidths for zTOCSY1D analysis may be chosen interactively with the cursor. All parameters are set from the "Acquire" tab/"Default" panel unless otherwise specified.

Parameter	Description	
Solvent (solvent)	Set from "Start" tab/"Standard" panel	
Spectral Width(sw)	Set from previously acquired PROTON*	
Number of scans(nt)	Select typical choices from pull down menu*	
SpinLock time	Select from pull down menu- 80ms works best for large spin systems*	
Run a mix=0 spectrum	Check box to acquire a control spectrum with a mixing time of Oms- creates an array	
No., ppm, width of selective frequencies	Select number of frequencies from the drop down menu. Enter frequency position(s) and bandwidth(s) in the entry boxes	
SpinLock Pattern	Pull-down menu on the "Pulse Sequence" panel- DIPSI2 works well for small molecules, DIPSI3 is a good choice for large molecules	

NOTE

You can type specific values for these parameters manually in the appropriate boxes on the "Acquisition" or "Pulse Sequence" panels.

Defaults Acquisition	Experiment: zTOCSY1D Solvent: d2o Observe: H1 Decoupler: C13	
Acquisition Pulse Sequence PRESAT WET Channels Flags Future Actions Overview	Acquisition Options Number of scans 16 Spinlock time 80 Run a mix=0 spectrum 8 scans Run a mix=0 spectrum 8 scans	
	No. of Selective Frequencies (max: 5): 0 Selective Freq: 0.00 0.00 0.00 ppm Selective width: 10.0 0.0 0.00 0.0 Hz OR Autoestimate from spectrum	

6 Selective 1D - (H)Sel1D Processing

Processing

Same processing as for standard PROTON spectrum. A typical processing apodization choice which provides S/N enhancement (at the expense of resolution) for a 1D spectrum is line broadening, with an lb setting from $^{\circ}0.5$ -1 Hz. A suggested optimal value is line broadening equal to the peak linewidth at half-height. Other types of apodization are available under the "Process" tab on the "Weighting" panel.

Tips, tricks, and next steps

• Choosing the zTOCSY1D experiment from a previously acquired PROTON data set allows for interactive selection of the peaks for analysis, and the "Default" panel appears differently (see below). Place the cursor(s) on or around the peak and click <u>select</u>. Repeat for additional peaks. Results are best if the more isolated peaks are chosen for correlation analysis. It is advisable not to keep the widths of the selected peak too narrow as it creates shaped pulses with long durations, which, in turn, can result in some sensitivity loss. The peak of interest does not necessarily have to be centered in the selection window if placing it off-center prevents interference from nearby resonances.

Defaults	Experiment: zTOCSY1D Solvent: cdcl3	Observe: H1 Decoupler: C13
Pulse Sequence PRESAT WET Channels Flags Future Actions Overview	Acquisition Options Number of scans 16 Spinlock time 80 Sum a mix=0 spectrum 8 scans Select Excitation Band using cursors Box/Cursor Expand/Full Select CLEAR ShowList	Receiver Gain (dB): 30

• The zTOCSY1D experiment contains a zero-quantum filter to suppress artifacts and often gives better results the than TOCSY1D.

- The spinlock time ultimately controls how far along the spin system the correlations extend. Use spinlock durations exceeding 150ms with caution, as this can result in sample heating. The efficiency of the TOCSY transfer is directly proportional to the size of the coupling constants between the pairs of protons. To show primarily vicinal and geminal couplings (such as for a COSY), select a shorter spinlock time, for example, 30ms or less.
- The DIPSI2 spinlock pattern is a good choice for small molecules and the DIPSI3 for larger molecules.
- The sensitivity of the zTOCSY1D experiment is <u>not</u> equivalent to a PROTON, nor is an 8-scan zTOCSY1D equivalent to an 8-scan, 256-increment zTOCSY. Do not hesitate to acquire this experiment with a larger number of scans, particularly for weak couplings or extended spin systems.
- When acquiring the zTOCSY1D with a larger number of scans, it is advisable to acquire a mixT=0 experiment, to see peaks that appear from any potential pulse imperfections, so as not to mistake them for TOCSY correlations. The mixT=0 spectrum can also be used to confirm the selective excitation occurred as expected, verifying a result from the mixT0 spectrum with no observed TOCSY correlation.
- It is also advisable to run a mixT=0 "reference" spectrum (using <u>Plum a mix-0 spectrum</u> <u>procession</u>), when TOCSY1D is acquired with longer spinlock mixing time. Unlike typical NOESY1D or ROESY1D, the selected resonance (i.e., the originally selected peak) may have intensity similar to the TOCSY peak and hence may not be obviously discernable.

References:

A. Bax, D. G. Davis, J. Magn. Reson. 63 (1985) 355-360. (TOCSY with MLEV17)

J. Cavanaugh, M. Rance, J. Magn. Reson. 96 (1992) 670-678. (TOCSY with DIPSI2)

K. Stott, J. Stonehouse, J. Keeler, T. L. Hwang, A. J. Shaka, J. Am. Chem. Soc. 117 (1995) 4199-4200. (Excitation Sculpting)

M. J. Trippleton, J. Keeler, Angew. Chem. Int. Ed. 42 (2003) 3938-3941. (Zero Quantum Suppression)

6 Selective 1D - (H)Sel1D selexcit

selexcit

General description and usage

Description:

A pulse sequence to acquire a 1D 1 H dataset with a selective pulse to excite only a portion of the spectrum.

Usage:

The selexcit experiment is most commonly used to set up band-selective 2D experiments (see Chapter 7). It can be used, however, to edit the proton spectrum and improve the dynamic range, when there may be large amounts of impurities and/or solvents signals. An example may be a sample from a biological matrix such as bile, which may have large signals in the aliphatic region and it may be desirable to selectively excite the aromatic region of the spectrum only. This experiment is most easily set up from a previously acquired PROTON spectrum so the frequencies and bandwidths for selective excitation are known, and may be chosen interactively with the cursor. All parameters are set from the "Acquire" tab/"Default" panel unless otherwise specified.

Parameter	Description
Solvent	Set from "Start" tab/"Standard" panel
Spectral Width (sw)	Set from previously acquired proton*
Number of scans	Select typical choices from pull down menu*
No., ppm, width of selective frequencies	Select number of frequencies from the drop down menu. Enter frequency position(s) and bandwidth(s) in the entry boxes

NOTE

You can type specific values for these parameters manually in the appropriate boxes on the "Acquisition" or "Pulse Sequence" panels.

Acquisition	Experiment: selexcit Solvent: d2o Obser	ve: H1 Decoupler:	C13
Pulse Sequence PRESAT WET Channels Flags Future Actions Overview	Acquisition Options Number of scans: 8	Receiver Gain (dB):	30
Overview	No. of Selective Frequencies (max: 5): 0 • Selective Freq: 0.00 0.00 0.00 0.00 ppm Selective width: 10.0 0.0 0.0 0.0 Hz		

Processing

Same processing as for standard PROTON spectrum. A typical processing apodization choice which provides S/N enhancement (at the expense of resolution) for a 1D spectrum is line broadening, with an lb setting from $^{\circ}0.5$ -1 Hz. A suggested optimal value is line broadening equal to the peak linewidth at half-height. Other types of apodization are available under the "Process" tab on the "Weighting" panel.

Tips, tricks, and next steps

• Choosing the selexcit experiment from a previously acquired PROTON data set allows for interactive selection of the peaks for analysis, and the "Default" panel appears differently (see below). Place the cursor(s) on or around the peak and click <u>select</u>. Repeat for additional peaks. Results are best if the more isolated peaks are chosen for correlation analysis. It is advisable not to make the widths of the selected peak too narrow as this creates shaped pulses of long durations, which, in turn, can result in some sensitivity loss. The peak of interest does not necessarily have to be centered in the selection window if placing it off-center prevents interference from nearby resonances from being selected.

Start Acquire	Process Show Time Acquire Stop Sequence	Arrays Seq. Help
Defaults Acquisition Pulse Sequence PRESAT WET Channels Flags Future Actions Overview	Experiment: selexcit Solvent: cdcl3 Acquisition Options Number of scans: B Select Excitation Band using cursors Multifrequency"excitation" Box/Cursor Expand/Full Select CLEAR ShowList	Observe: H1 Decoupler: C13 Receiver Gain (dB): 30

- The selexcit experiment has a check option to do multifrequency excitation. Choosing multiple bands (interactively from the PROTON spectrum) with this check box "ON" results in a single spectrum wherein all of the selected bands are included. However, selection of multiple bands with this check box "OFF" results in multiple spectra each with a single selected band.
- The sensitivity of the selexcit experiment is usually <u>not</u> equivalent to a PROTON, due to some potential loss from the selective pulse.
- Setting up the desired regions from a selexcit experiment is the easiest way to configure a band-selective 2D experiment (see Chapter 7).

References:

K. Stott, J. Stonehouse, J. Keeler, T. L. Hwang, A. J. Shaka, J. Am. Chem. Soc. 117 (1995) 4199-4200. (Excitation Sculpting)

stepNOESY1D

General description and usage

Description:

A pulse sequence to acquire a 1D TOCSYNOESY dataset with a selective pulse to obtain TOCSYNOESY information from a specific frequency. It is effectively a 1D equivalent of a 3D experiment.

Usage:

The stepNOESY1D experiment first acquires a TOCSY1D on a selected peak from a PROTON spectrum, and then performs a NOESY1D on one of the TOCSY correlations. This experiment, while somewhat insensitive, can be helpful to simplify and obtain subspectra of impure samples and/or complex spectra when there is one resolved peak from the desired molecule of interest. This is a unique method to obtain NOE information from completely obscured protons in a complex molecule. This experiment is most easily set up from a previously acquired PROTON spectrum so the frequencies for the TOCSY and subsequent NOE analysis are chosen interactively with the cursor. All parameters are set from the "Acquire" tab/"Default" panel unless otherwise specified.

Parameter	Description	
Solvent (solvent)	Set from "Start" tab/"Standard" panel	
Spectral Width(sw)	Set from previously acquired PROTON*	
Number of scans(nt)	Select typical choices from pull down menu*	
TOCSY STEP ON/OFF	Check box to turn off TOCSY to set up STEP band (turn off NOE also); turn on for analysis	
STEP mixing time	Select from pull down menu- 80ms works best for large spin systems*	
Set STEP band, STEP peak (ppm), width (Hz)	Select desired TOCSY correlation with cursor type in ppm/width, click "Select and makeshape" button	
NOE ON/OFF	Check box to turn off NOE to set up NOE band; turn on for analysis	
NOE mixing time	Select from pull down menu- 500ms works best well for most small molecules*	
Set NOE band	Select desired TOCSY correlation with cursors, click "Select and makeshape button"	

NOTE

You can type specific values for these parameters manually in the appropriate boxes on the "Acquisition" or "Pulse Sequence" panels.

Processing

Same processing as for standard PROTON spectrum, except that manual phasing may be required as the NOE peaks may be negative for smaller molecules. A typical processing apodization choice which provides S/N enhancement (at the expense of resolution) for a 1D spectrum is line broadening, with an lb setting from ~0.5-1 Hz. A suggested optimal value is line broadening equal to the peak linewidth at half-height. Other types of apodization are available under the "Process" tab on the "Weighting" panel.

Tips, tricks, and next steps

- The STEP band for the TOCSY may be selected from a previously acquired PROTON dataset, or a quick stepNOESY1D experiment with the TOCSY STEP and NOE off can be used to acquire a quick sample spectrum. Place the cursor(s) on or around the peak to be selected and click Select and makeshape . Alternatively, the frequency (ppm) and width (Hz) for the STEP peak may be entered in the boxes provided and makeshape clicked. The NOE band may also be selected from a previously acquired TOCSY1D or zTOCSY1D spectrum. Alternately, a quick stepNOESY1D experiment with the TOCSY STEP on and NOE off can be acquired and used for NOE band selection. Place the cursor(s) on or around the peak to be selected and click Select and makeshape. It is advisable to not keep the widths of the selected peaks too narrow, as it creates shaped pulses with long durations, which can, in turn, result in some sensitivity loss. The peak of interest does not necessarily have to be centered in the selection window if placing it off-center prevents interference from nearby resonances.
- Use spinlock (STEP mixing time) durations exceeding 150ms with caution as this can result in sample heating. The efficiency of the TOCSY transfer is directly proportional to the size of the coupling constants between the pairs of protons. A STEP mixing time of 30-80ms is typical for most small molecules, depending on the length of the coupling network and the size of the intervening coupling constants. An 80ms STEP mixing time is a good choice for molecules with extended spin systems.

- The TOCSY spinlock pattern can be selected from the "STEP" tab. The DIPSI2 spinlock pattern is a good choice for small molecules and the DIPSI3 is typically used for larger molecules.
- A mixing time for the NOE of 500ms is a good starting place for most small molecules. Very small molecules and/or weak NOE interactions may require longer mixing times (up to ~1s). Longer mixing times, however, increase the possibility of spin diffusion for larger molecules, a situation where the magnetization is transferred through space, and then through coupling, resulting in spurious correlations between protons. As in NOESY1D, the NOE correlation can be confirmed by acquiring a build-up curve, whereby the mixing time is slowly increased in 50-100ms increments until the NOE intensity ceases to increase and levels off. This is the optimal mixing time. In addition, the slope of such a build up curve can be used to determine bond distances between selected spin pairs (using methods such as PANIC).
- The sensitivity of the stepNOESY1D experiment is quite low, as it is essentially a 1D equivalent of a 3D experiment, which typically takes a long time to acquire. Do not hesitate to acquire this experiment with a larger number of scans. It may also be helpful to optimize the STEP and NOE mixing times with TOCSY1D and NOESY1D experiments before acquiring the stepNOESY1D.

References:

H. Hu, S. Bradley, K. Krishnamurthy, J. Magn. Reson., 171 (2004), 201 (STEPNOESY1D)

S. Macura, Y. Huang, D. Suter, R. R. Ernst, J. Magn. Reson. 43 (1981) 259-281. (NOESY)

K. Stott, J. Stonehouse, J. Keeler, T. L. Hwang, A. J. Shaka, J. Am. Chem. Soc. 117 (1995) 4199-4200. (Excitation Sculpting)

M. J. Trippleton, J. Keeler, Angew. Chem. Int. Ed. 42 (2003) 3938-3941. (Zero Quantum Suppression)

6 Selective 1D - (H)Sel1D

Tips, tricks, and next steps

Agilent VnmrJ 4 Experiment Guide

7

Selective 2D - Sel2D

Sel2D Tab 250 (HC)bsHSQCAD 252 (HC)bsgHSQCAD 256 (HC)bsgHMBC 260 (HC)EXSIDE 264 (HC)bsHSQCNOESY 268 (HC)bsHSQCROESY 274 (HH)bsROESY 280 (HH)bsTOCSY 284 (HH)bsNOESY 288

7 Selective 2D - Sel2D Sel2D Tab

Sel2D Tab

The experiments in the "Sel2D tab" are F1 band-selected 2D experiments. Band-selection in the F1 dimension saves time and improves resolution in any 2D experiment by reducing the number of increments needed in that dimension, while allowing the operator to focus on the correlation region of interest. In the heteronuclear experiments this can be especially useful for resolving nearly-degenerate 1 H- 13 C resonances into unambiguous correlations. With homonuclear spectra it can shed light, for example, into a crowded aromatic region of a NOESY. Such high resolution in the traditional (broadband version) experiment can only be obtained at the cost a very high number of increments (and hence spectrometer time).

The homonuclear experiments include (HH)bsROESY, (HH)bsTOCSY, and (HH)bsNOESY. All of these experiments are setup either from a PROTON spectrum, a selexcit experiment (selective 1D), or by simple entry of the desired F1 region in the setup panels. All necessary selective pulses are created automatically and the parameters set appropriately. The homonuclear experiments support the option for broadband homonuclear decoupling in the F1 dimension, thereby further improving resolution.

The heteronuclear experiments are proton-carbon by default, with 13 C as the band-selected dimension. If the selective 2D experiment is setup from a traditional 2D data set of the same type, for example, HSQC or HMBC, the operator can choose the band-selected frequencies with cursors from the existing spectra. Alternatively, the desired F1 window can be chosen by entering the desired region into the parameter entries. All required shaped pulses are created automatically.

There are two experiments that only appear in the Sel2D tab, (HC)bsHSQCNOESY and (HC)bsHSQCROESY. Because the F1 window can be customized, the HSQCNOESY/ROESY is available for a wide range of structural problems. The information conveyed is similar to the HetToxy family of experiments, for example, "proton A has NOE to a proton B, whose carbon is at that chemical shift", but with the potential of added resolution for the carbon shifts.

The (HC)EXSIDE is an experiment that provides a method to measure long-range H/C coupling constants. Typically the (HC)EXSIDE is setup from a selexcit experiment, where the multi-band option is used to select

all desired protons, taking care to exclude pairs from the same spin system. The coupling constants are seen as in-phase pairs in the F1 dimension, scaled up by a J-scaling parameter.

Experiment Selector	₽ ×
HF_Expts (HC)Crisis2	Hadamard
Sel2D Dosy 2	D Dosy 3D
Jn(CH)corr (H)Sel1	.D (HC)HetToxys
Service (HH)Homo2D	JSpectra J1(CH)corr
Common Std 1D (0	C)corr System Studies
(HC)bsHSQCAD	(HC)bsgHSQCAD
(HC)bsgHMBC	(HC)EXSIDE
(HC)bsHSQCN0ESY	(HC)bsHSQCROESY
(HH)bsR0ESY	(HH)bsTOCSY
(HH)bsNOESY	

(HC)bsHSQCAD

General description and usage

Description:

Two Dimensional heteronuclear single-quantum 1-bond J-correlation spectroscopy with adiabatic 180° X-nuclei pulses and band-selection in F1.

Usage:

The (HC)bsHSQCAD experiment is used to acquire a 2-dimensional spectrum to correlate protons to directly attached carbons in a band-selected region along F1. Using band-selection is an efficient way to increase the resolution in the F1 carbon dimension without adding large numbers of increments and, hence, experiment time. The selected band can either be typed in or chosen interactively from a previously acquired HSQC-type experiment. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Parameter	Description	
Spectral Width (sw)	Set from previously acquired PROTON*	
Acquisition time (at)	Set from "Pulse Sequence" panel, controls the resolution in F2, default 0.15s	
F1 Nucleus (dn)	Pull- down menu to set F1 nucleus to ¹³ C, ¹⁵ N, or other	
C13 Spectral Width (ppm)	Type in desired chemical shift range for F1 dimension or check box to select interactivelyfrom previously acquired HSQC-type experiment	
Scans per t1 increment (nt)	Select typical choices from pull down menu*	
t1 Increments (ni)	Select typical choices from pull down menu*- controls the resolution in F1	
One-Bond J1xh (j1xh)	Set value for the average $^1\mathrm{J}_{\mathrm{X},\mathrm{H}^-}$ 146 Hz works well for many carbons	
Steady State (ss)	Set from "Pulse Sequence" panel, turn on/off gradient cleanup between scans	
C12-H1 suppression	Set from "Pulse Sequence" panel- check box to turn on/off TANGO-Gradient ¹² C suppression (default is on- highly recommended)	

NOTE

You can type specific values for these parameters manually in the appropriate boxes on the "Acquisition" panel.

Processing

Automated processing is turned on by default, and the parameters are set to reasonable values, such that the resulting data after the acquisition usually require no further adjustment. The "Process" tab/"Basic" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (1k x 1k is the default), as well as a check box to turn on/off linear prediction and a pull-down to control the extent of linear prediction (default is 4*ni). Menus to quickly change the weighting functions in F2/F1 are also present (defaults are gaussians); the parameters for the weighting functions are calculated automatically from the acquisition time and number of increments. More processing details are found under some of the other "Process" panels, such as the "Default", "Weighting", and "More 2D" panels.

Tips, tricks, and next steps

• Spectral width (sw) setting transfers from a PROTON if the (HC)bsHSQCAD is set up from this experiment. All HSQC-related parameters transfer if the experiment is set up from a previously acquired HSQC-type experiment and the F1 band may be selected interactively. Receiver gain (gain) is usually set to a high value (\geq 30), unless the sample is extremely concentrated or ¹³C-labelled.
- To measure ${}^{1}\text{H}{}^{-13}\text{C}$ (or ${}^{1}\text{H}{}^{-X}$) coupling constants, the carbon decoupling can be turned off by entering "nnn" in the Channel 2 "Dec On/Off" entry on the "Channels" panel or alternatively by typing dm='nnn' on the command line.
- The default number of steady state scans (ss) that are acquired before data acquisition to establish sample equilibrium is 32, which works for most samples. However, higher power carbon decoupling may cause some perturbations that may necessitate more ss scans to reach equilibrium. This value is changed on the "Acquisition" panel of the "Acquire" tab if necessary.
- The default parameters use a Grad-90-Grad steady state between scans, which helps cleanup un-relaxed magnetization. This can result in much cleaner spectra, especially when using shorter acquisition times (at) and relaxation delays (d1) (defaults are 0.15s and 1s, respectively).
- The (HC)bsHSQCAD experiment has a sensitivity advantage (factor of \sim 1.4) over the (HC)bsgHSQCAD, but may produce potentially less clean spectra (due to t1 noise from strong signals such as t-butyl) than its gradient counterpart.

G. Bodenhausen, D. J. Ruben, Chem. Phys. Lett. 69 (1980) 185-189. (HSQC)

E. Kupce, R. Freeman, J. Magn. Reson. Ser. A 117 (1995) 246-256. (Adiabatic Pulses)

C. Gaillet, C. Liquart, P. Deberie, J. M. Nuzillard, J. Magn. Reson. 139 (1999) 454-459. (Band Selective HSQC/HMBC)

(HC)bsgHSQCAD

General description and usage

Description:

Two Dimensional heteronuclear single-quantum 1-bond J-correlation spectroscopy with adiabatic 180° X-nuclei pulses, gradient coherence selection, and band-selection in F1.

Usage:

The (HC)bsgHSQCAD experiment is used to acquire a 2-dimensional spectrum to correlate protons to directly attached carbons in a band-selected region along F1. Using band-selection is an efficient way to increase the resolution in the F1 carbon dimension without adding large numbers of increments and, hence, experiment time. The selected band can either be typed in or chosen interactively from a previously acquired HSQC-type experiment. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Parameter	Description
Spectral Width (sw)	Set from previously acquired PROTON*
Acquisition time (at)	Set from "Pulse Sequence" panel, controls the resolution in F2, default 0.15s
F1 Nucleus (dn)	Pull- down menu to set F1 nucleus to ¹³ C, ¹⁵ N, or other
C13 Spectral Width (ppm)	Type in desired chemical shift range for F1 dimension or check box to select interactivelyfrom previously acquired gHSQCAD
Scans per t1 increment (nt)	Select typical choices from pull down menu*
t1 Increments (ni)	Select typical choices from pull down menu*- controls the resolution in F1
One-Bond J1xh (j1xh)	Set value for the average $^1\mathrm{J}_{\mathrm{X},\mathrm{H}^{-}}$ 146 Hz works well for many carbons
Steady State (ss)	Set from "Pulse Sequence" panel, turn on/off gradient cleanup between scans
C12-H1 suppression	Set from "Pulse Sequence" panel- check box to turn on/off TANGO-Gradient ¹² C suppression (default is on- highly recommended)

NOTE

7 Selective 2D - Sel2D Processing

Processing

Automated processing is turned on by default, and the parameters are set to reasonable values, such that the resulting data after the acquisition usually require no further adjustment. The "Process" tab/"Basic" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (1k x 1k is the default), as well as a check box to turn on/off linear prediction and a pull-down to control the extent of linear prediction (default is 4*ni). Menus to quickly change the weighting functions in F2/F1 are also present (defaults are gaussians); the parameters for the weighting functions are calculated automatically from the acquisition time and number of increments. More processing details are found under some of the other "Process" panels, such as the "Default", "Weighting", and "More 2D" panels.

Tips, tricks, and next steps

- Spectral width (sw) setting transfers from a PROTON if the (HC)bsgHSQCAD is set up from this experiment. All HSQC-related parameters transfer if the experiment is set up from a previously acquired HSQC-type experiment and the F1 band may be selected interactively. Receiver gain (gain) is usually set to a high value (\geq 30), unless the sample is extremely concentrated or ¹³C-labelled.
- To measure ${}^{1}\text{H}{-}{}^{13}\text{C}$ (or ${}^{1}\text{H}{-}X$) coupling constants, the carbon decoupling can be turned off by entering "nnn" in the Channel 2 "Dec On/Off" entry on the "Channels" panel or alternatively by typing dm='nnn' on the command line.
- The default number of steady state scans (ss) that are acquired before data acquisition to establish sample equilibrium is 32, which works for most samples. However, higher power carbon decoupling may cause some perturbations that may necessitate more ss scans to reach equilibrium. This value is changed on the "Acquisition" panel of the "Acquire" tab if necessary.
- The default parameters use a Grad-90-Grad steady state between scans, which helps cleanup un-relaxed magnetization. This can result in much cleaner spectra, especially when using shorter acquisition times (at) and relaxation delays (d1) (defaults are 0.15s and 1s, respectively).

• The (HC)bsHSQCAD experiment has a sensitivity advantage (factor of \sim 1.4) over the (HC)bsgHSQCAD, but may produce potentially less clean spectra (due to t1 noise from strong signals such as t-butyl) than its gradient counterpart.

References:

G. Bodenhausen, D. J. Ruben, Chem. Phys. Lett. 69 (1980) 185-189. (HSQC)

E. Kupce, R. Freeman, J. Magn. Reson. Ser. A 117 (1995) 246-256. (Adiabatic Pulses)

C. Gaillet, C. Liquart, P. Deberie, J. M. Nuzillard, J. Magn. Reson. 139 (1999) 454-459. (Band Selective HSQC/HMBC)

(HC)bsgHMBC

General description and usage

Description:

Two Dimensional heteronuclear multiple-bond J-correlation spectroscopy with gradient coherence selection and band-selection in F1.

Usage:

The (HC)bsgHMBC experiment is used to acquire a 2-dimensional spectrum to correlate protons to carbons in a band-selected region along F1, usually over 2-3 bonds with the 3-bond correlations typically being stronger. Using band-selection is an efficient way to increase the resolution in the F1 carbon dimension without adding large numbers of increments and, hence, experiment time. The selected band can either be typed in or chosen interactively from a previously acquired HSQC- or HMBC-type data set. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Parameters	Description
Spectral Width (sw)	Set from previously acquired PROTON*
Acquisition time (at)	Set from "Pulse Sequence" panel, controls the resolution in F2, default 0.15s
F1 Nucleus (dn)	Pull- down menu to set F1 nucleus to 13 C, 15 N, or other*
C13 Spectral Width (ppm)	Type in desired chemical shift range for F1 dimension or check box to select interactivelyfrom previously acquired (CH) correlation experiment
Scans per t1 increment (nt)	Select typical choices from pull down menu*
t1 Increments (ni)	Select typical choices from pull down menu*- controls the resolution in F1 (minimum ${\sim}64)$
Multiple-Bond Jnxh (jnxh)	Pull-down menu to set value for the average $^nJ_{X,H}$ - 8 Hz works well for most molecules
One-Bond suppression	Set from "Pulse Sequence" panel- turn on/off suppression of one-bond correlations- default is on
Steady State (ss)	Set from "Pulse Sequence" panel, turn on/off gradient cleanup between scans

NOTE

7 Selective 2D - Sel2D Processing

Processing

Automated processing is turned on by default, and the parameters are set to reasonable values, such that the resulting data after the acquisition usually require no further adjustment. The "Process" tab/"Basic" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (2k x 1k is the default), as well as a check box to turn on/off linear prediction and a pull-down to control the extent of linear prediction (default is 4*ni). Menus to quickly change the weighting functions in F2/F1 are also present (defaults are gaussian in F1 and sqsinebell in F2); the parameters for the weighting functions are calculated automatically from the acquisition time and number of increments. More processing details are found under some of the other "Process" panels, such as the "Default", "Weighting", and "More 2D" panels. It is important to note that this experiment employs mix-mode processing, with the F2 dimension absolute value and F1 phase-sensitive. This arrangement allows for the best resolution and sensitivity combination.

Tips, tricks, and next steps

- Spectral width (sw) setting transfers from a PROTON if the (HC)bsgHMBC is set up from this experiment. All HMBC-related parameters transfer if the experiment is set up from a previously acquired HMBC-type experiment and the F1 band may be selected interactively. Receiver gain (gain) is usually set to a high value (\geq 30), unless the sample is extremely concentrated or ¹³C-labelled.
- The default number of steady state scans (ss) that are acquired before data acquisition to establish sample equilibrium is 32, which works for most samples. This value is changed on the "Acquisition" panel of the "Acquire" tab if necessary.
- The default parameters use a Grad-90-Grad steady state between scans, which helps cleanup un-relaxed magnetization. This can result in much cleaner spectra, especially when using shorter acquisition times (at) and relaxation delays (d1) (defaults are 0.15s and 1s, respectively).

- The experiment features a 2-step low-pass filter that can eliminate undesired crosspeaks from one-bond couplings. Select two coupling constants on the "Pulse Sequence" panel around which one-bond couplings are eliminated (default values are 165 and 130 Hz). These filters are rather narrow-band, however, and if the spread of coupling constants is such that some couplings lie considerably outside these values (for example 115 or 145 Hz), its signals may still be visible in the spectrum. As HMBC-type spectra are recorded without ¹³C decoupling, such signals can usually still be discerned from long-range crosspeaks by their one-bond splitting.
- The jnxh sets the optimal value of the proton-carbon coupling constant for detection. Using smaller values may increase the chances of seeing longer-range correlations, but at the expense of correlations with larger coupling constants, and, more importantly, at the expense of sensitivity.

A. Bax, M. F. Summers, J. Am. Chem. Soc. 108 (1986) 2093-2094. (HMBC)

E. Kupce, R. Freeman, J. Magn. Reson. Ser. A 117 (1995) 246-256. (Adiabatic Pulses)

C. Gaillet, C. Liquart, P. Deberie, J. M. Nuzillard, J. Magn. Reson. 139 (1999) 454-459. (Band Selective HSQC/HMBC)

(HC)EXSIDE

General description and usage

Description:

Two Dimensional band-selective HSQC-type experiment for measuring long-range ${}^{1}\text{H}{-}{}^{13}\text{C}$ coupling constants.

Usage:

The (HC)EXSIDE experiment is used primarily to obtain information about long-range 1 H- 13 C coupling constants. Setup is from a previously acquired selexcit experiment. The data appears as a 2D 1-bond 1 H- 13 C correlation with proton chemical shifts in F2 and carbon in F1. The long-range 1 H- 13 C coupling constants are measured from in-phase pairs in the F1 dimension scaled up by the j-scaling factor. The specific advantage of (HC)EXSIDE in measuring long-range coupling constants is that (i) they are measured along F1 as doublets with the peak separation scaled by a user definable scaling factor and (ii) only the heteronuclear active coupling is observed without any interference from 1 H- 1 H homonuclear couplings. Proton-carbon coupling constants are often used to help define e/z stereochemistry of double bonds or molecular conformations, for example, the torsion angles of peptides. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Key parameters

Parameters	Description
Spectral Width (sw)	Set from previously acquired selexcit
Acquisition time (at)	Set from "Pulse Sequence" panel, controls the resolution in F2, default 0.15s
F1 Nucleus (dn)	Pull- down menu to set F1 nucleus to 13 C, 15 N, or other*
C13 Spectral Width (ppm)	Type in desired chemical shift range for F1 dimension
Scans per t1 increment (nt)	Select typical choices from pull down menu*
t1 Increments (ni)	Select typical choices from pull down menu*- controls the resolution in F1 (minimum ~64)
n-Bond jxh (jnxh)	Pull-down menu to set value for the average ⁿ J _{X,H} - 8 Hz works well for most molecules
J-scale (jscale)	Scaling factor for the coupling constants in F1
One-Bond suppression	Set from "Pulse Sequence" panel- turn on/off suppression of one-bond correlations- default is on
Steady State (ss)	Set from "Pulse Sequence" panel, turn on/off gradient cleanup between scans

NOTE

Processing

Automated processing is turned on by default, and the parameters are set to reasonable values, such that the resulting data after the acquisition usually require no further adjustment. The "Process" tab/"Basic" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (2k x 1k is the default), as well as a check box to turn on/off linear prediction and a pull-down to control the extent of linear prediction (default is 4*ni). Menus to quickly change the weighting functions in F2/F1 are also present (defaults are gaussians); the parameters for the weighting functions are calculated automatically from the acquisition time and number of increments. More processing details are found under some of the other "Process" panels, such as the "Default", "Weighting", and "More 2D" panels.

Tips, tricks, and next steps

• This experiment is setup from a previously acquired selexcit experiment. Select the multi-band option and choose all desired protons, taking care to select only protons which do not share a mutual homonuclear coupling. Ideally, a COSY-type experiment is acquired and used to guide selection of resonances (not coupled to each other) for the selexcit. If heteronuclear coupling constants need to be determined from two mutually coupled protons, two EXSIDE experiments must be acquired. Receiver gain (gain) is usually set to a high value (\geq 30), unless the sample is extremely concentrated or ¹³C-labelled.

- The default number of steady state scans (ss) that are acquired before data acquisition to establish sample equilibrium is 32, which works for most samples. This value is changed on the "Acquisition" panel of the "Acquire" tab if necessary.
- The default parameters use a Grad-90-Grad steady state between scans, which helps cleanup un-relaxed magnetization. This can result in much cleaner spectra, especially when using shorter acquisition times (at) and relaxation delays (d1) (defaults are 0.15s and 1s, respectively).
- The jnxh parameter sets the optimal value of the proton-carbon coupling constant for detection.
- Proton-carbon long range coupling constants are often used to help define e/z stereochemistry of double bonds or molecular conformations, for example, the torsion angles of peptides.

V. V. Krishnamurthy, J. Magn. Reson. Ser. A121 (1996) 33-41. (EXSIDE)

(HC)bsHSQCNOESY

General description and usage

Description:

Two dimensional heteronuclear single-quantum 1-bond J-correlation spectroscopy with the addition of a noesy mixing time Contains adiabatic 180° X-nuclei pulses and band-selection in F1.

Usage:

The (HC)bsHSQCNOESY experiment is used to acquire a 2-dimensional spectrum to collect information correlating NOE and carbon chemical shift information, for example, Proton A has an NOE to proton B at carbon chemical shift X. The band-selection along the F1 dimension gives the (HC)bsHSQCNOESY an advantage of better resolution than a non-selective HSQCNOESY. The selected band can either be typed in or chosen interactively from a previously acquired HSQC-type spectrum. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Parameters	Description
Spectral Width (sw)	Set from previously acquired PROTON*
Acquisition time (at)	Set from "Pulse Sequence" panel, controls the resolution in F2, default 0.15s
F1 Nucleus (dn)	Pull- down menu to set F1 nucleus to ¹³ C, ¹⁵ N, or other*
C13 Spectral Width (ppm)	Type in desired chemical shift range for F1 dimension or check box to select interactively from previously acquired gHSQCAD
Scans per t1 increment (nt)	Select typical choices from pull down menu*
t1 Increments (ni)	Select typical choices from pull down menu*- controls the resolution in F1 (minimum ~64)
One-Bond J1xh (j1xh)	Set value for the average $^1\mathrm{J}_{\mathrm{X},\mathrm{H}^-}$ 146 Hz works well for many carbons
NOE Mixing time (mixN)	Select from pull down menu- 500ms works well as a starting point*
Steady State (ss)	Set from second "Pulse Sequence" panel, turn on/off gradient cleanup between scans
C12-H1 suppression	Set from "Pulse Sequence" panel- controls type of ¹² C suppression- default is TANGO-Gradient (highly recommended)

NOTE

Processing

Automated processing is turned on by default, and the parameters are set to reasonable values, such that the resulting data after the acquisition usually require no further adjustment. The "Process" tab/"Basic" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (1k x 1k is the default), as well as a check box to turn on/off linear prediction and a pull-down to control the extent of linear prediction (default is 4*ni). Menus to quickly change the weighting functions in F2/F1 are also present (defaults are gaussians); the parameters for the weighting functions are calculated automatically from the acquisition time and number of increments. More processing details are found under some of the other "Process" panels, such as the "Default", "Weighting", and "More 2D" panels.

Tips, tricks, and next steps

• Spectral width (sw) setting transfers from a PROTON if the (HC)bsHSQCNOESY is set up from this experiment. All HSQC-related parameters transfer if the experiment is set up from a previously acquired HSQC-type experiment and the F1 band may be selected interactively. Receiver gain (gain) is usually set to a high value (\geq 30), unless the sample is extremely concentrated or ¹³C-labelled.

- The default number of steady state scans (ss) that are acquired before data acquisition to establish sample equilibrium is 32, which works for most samples. However, higher power carbon decoupling may cause some perturbations that may necessitate more ss scans to reach equilibrium. This value is changed on the "Acquisition" panel of the "Acquire" tab if necessary.
- The default parameters use a Grad-90-Grad steady state between scans, which helps cleanup un-relaxed magnetization. This can result in much cleaner spectra, especially when using shorter acquisition times (at) and relaxation delays (d1) (defaults are 0.15s and 1s, respectively).
- A mixing time of 500ms is a good starting place for most small molecules. Very small molecules and/or weak NOE interactions may require longer mixing times (up to ~1s). Longer mixing times, however, increase the possibility of spin diffusion for larger molecules, a situation where the magnetization is transferred through space, and then through coupling, resulting in spurious correlations between protons. The NOE correlation can be confirmed by acquiring a build-up curve, whereby the mixing time is slowly increased in 50-100ms increments until the NOE intensity ceases to increase and levels off. This is the optimal mixing time.
- Medium-sized molecules (MW ~500 depending on the molecule and spectrometer frequency) can exhibit zero or very small NOEs. Consider acquiring a (HC)bsHSQCROESY for these molecules. Alternatively one may consider, (i) choosing a more viscous solvent such as d_6 -DMSO or d_6 -DMSO with ~10-20% D₂O (which results in slower molecular tumbling and hence generates a positive NOE enhancement like larger molecules), (ii) selecting a lower temperature (if the solvent allows it), or (iii) running the experiment on a spectrometer with higher field strength (if available).
- Small molecules may have crosspeaks arising from chemical exchange during the NOE mixing time and have the same phase as the diagonal. The exchange crosspeaks provide information about inter-converting molecular conformations and can be used to recognize such molecular dynamic processes.
- (HC)bsHSQCNOESY spectra may sometimes contain signals with partial antiphase character. Zero quantum suppression is embedded (and switched on by default) into the (HC)bsHSQCNOESY pulse sequence to suppress such artifacts.

S. Macura, Y. Huang, D. Suter, R. R. Ernst, J. Magn. Reson. 43 (1981) 259-281. (NOESY)

E. Kupce, R. Freeman, J. Magn. Reson. Ser. A 117 (1995) 246-256. (Adiabatic Pulses)

C. Gaillet, C. Liquart, P. Deberie, J. M. Nuzillard, J. Magn. Reson. 139 (1999) 454-459. (Band Selective HSQC/HMBC)

M. J. Trippleton, J. Keeler, Angew. Chem. Int. Ed. 42 (2003) 3938-3941. (Zero Quantum Suppression)

Selective 2D - Sel2D 7 Tips, tricks, and next steps

(HC)bsHSQCR0ESY

General description and usage

Description:

Two Dimensional heteronuclear single-quantum 1-bond J-correlation spectroscopy with the addition of a roesy mixing time Contains adiabatic 180° X-nuclei pulses and band-selection in F1.

Usage:

The (HC)bsHSQCROESY experiment is used to acquire a 2-dimensional spectrum to collect information correlating NOE and carbon chemical shift information, for example, Proton A has an ROE to proton B at carbon chemical shift X. The band-selection along F1 dimension gives the (HC)bsHSQCROESY an advantage of a better resolution than a non-selective HSQCROESY. The selected band can either be typed in or chosen interactively from a previously acquired HSQC-type spectrum. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Parameters	Description
Spectral Width (sw)	Set from previously acquired PROTON*
Acquisition time (at)	Set from "Pulse Sequence" panel, controls the resolution in F2, default 0.15s
F1 Nucleus (dn)	Pull- down menu to set F1 nucleus to ¹³ C, ¹⁵ N, or other*
C13 Spectral Width (ppm)	Type in desired chemical shift range for F1 dimension or check box to select interactively from previously acquired gHSQCAD
Scans per t1 increment (nt)	Select typical choices from pull down menu*
t1 Increments (ni)	Select typical choices from pull down menu*- controls the resolution in F1 (minimum ~64)
One-Bond J1xh (j1xh)	Set value for the average $^1\mathrm{J}_{\mathrm{X},\mathrm{H}^-}$ 146 Hz works well for many carbons
Spinlock Duration	Select from pull down menu- 200ms works well for most small molecules* D0 NOT EXCEED 500ms
Steady State (ss)	Set from second "Pulse Sequence" panel, turn on/off gradient cleanup between scans
C12-H1 suppression	Set from "Pulse Sequence" panel- controls type of ¹² C suppression- default is TANGO-Gradient (highly recommended)

NOTE

Processing

Automated processing is turned on by default, and the parameters are set to reasonable values, such that the resulting data after the acquisition usually require no further adjustment. The "Process" tab/"Basic" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (1k x 1k is the default), as well as a check box to turn on/off linear prediction and a pull-down to control the extent of linear prediction (default is 4*ni). Menus to quickly change the weighting functions in F2/F1 are also present (defaults are gaussians); the parameters for the weighting functions are calculated automatically from the acquisition time and number of increments. More processing details are found under some of the other "Process" panels, such as the "Default", "Weighting", and "More 2D" panels.

Tips, tricks, and next steps

• Spectral width (sw) setting transfers from a PROTON if the (HC)bsHSQCROESY is set up from this experiment. All HSQC-related parameters transfer if the experiment is set up from a previously acquired HSQC-type experiment and the F1 band may be selected interactively. Receiver gain (gain) is usually set to a high value (\geq 30), unless the sample is extremely concentrated or ¹³C-labelled.

- The default number of steady state scans (ss) that are acquired before data acquisition to establish sample equilibrium is 32, which works for most samples. However, higher power carbon decoupling may cause some perturbations that may necessitate more ss scans to reach equilibrium. This value is changed on the "Acquisition" panel of the "Acquire" tab if necessary.
- The default parameters use a Grad-90-Grad steady state between scans, which helps cleanup un-relaxed magnetization. This can result in much cleaner spectra, especially when using shorter acquisition times (at) and relaxation delays (d1) (defaults are 0.15s and 1s, respectively).
- A mixing time of 200ms is a good starting place for most small molecules. Very weak ROE interactions may require longer mixing times (up to \sim 500ms), but keep the mixing time shorter as longer spinlocks may result in sample heating. It is a good idea not to exceed a 500ms spinlock.
- Because the mixing time for the (HC)bsHSQCROESY is limited, weaker correlations may not be observable. (HC)bsHSQCROESY is the experiment of choice over (HC)bsHSQCNOESY for medium-sized molecules (MW ~800-1000 depending on the molecule and spectrometer frequency), as they can exhibit zero or very small NOEs. One may consider running (HC)bsHSQCNOESY experiments (which can be run with longer mixing times) by (i) choosing a more viscous solvent such as d₆-DMSO or d₆-DMSO with ~10-20% D₂O (which results in slower molecular tumbling and hence generates a positive NOE enhancement like larger molecules), (ii) selecting a lower temperature (if the solvent allows it), or (iii) running the experiment on a spectrometer with higher field strength (if available).
- Crosspeaks in the (HC)bsHSQCROESY spectrum that have the same phase as the diagonal may arise from chemical exchange during the ROE mixing time, or due to TOCSY-type correlations (couplings). The exchange crosspeaks provide information about inter-converting molecular conformations and can be used to recognize such molecular dynamic processes.

A. Bax, D. G. Davies, J. Magn. Reson. 63 (1985) 207-213. (ROESY)

E. Kupce, R. Freeman, J. Magn. Reson. Ser. A 117 (1995) 246-256. (Adiabatic Pulses)

7 Selective 2D - Sel2D

Tips, tricks, and next steps

C. Gaillet, C. Liquart, P. Deberie, J. M. Nuzillard, J. Magn. Reson. 139 (1999) 454-459. (Band Selective HSQC/HMBC)

M. J. Trippleton, J. Keeler, Angew. Chem. Int. Ed. 42 (2003) 3938-3941. (Zero Quantum Suppression)

Selective 2D - Sel2D 7 Tips, tricks, and next steps

(HH)bsROESY

General description and usage

Description:

Two Dimensional through-space correlation spectroscopy in the rotating frame with band-selection in F1.

Usage:

This experiment produces a 2-dimensional spectrum with peaks along the diagonal corresponding to the peaks in a 1D PROTON and crosspeaks between protons that are close in space (typically <4 Å). This experiment has an added feature above the ROESY of band-selection in F1, which is an efficient way to increase the resolution in the F1 dimension without adding a large number of increments and, hence, experiment time. There is an added experimental option for homonuclear decoupling in F1 to further improve the resolution. The (HH)bsROESY can be very useful to obtain high-resolution through-space correlations to an overlapped area of the spectrum, for example the a-proton region of peptides. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Parameter	Description
Spectral Width (sw)	Set from previously acquired PROTON*
Acquisition time (at)	Set from "Pulse Sequence" panel, controls the resolution in F2, default 0.15s
Relaxation time (d1)	Set from "Acquisition" panel, controls the delay between scans
Number of scans (nt)	Select typical choices from pull down menu*
Spinlock Duration	Select from pull down menu- 200ms works well for most small molecules* DO NOT EXCEED 500ms
t1 Increments (ni)	Select typical choices from pull down menu*- controls the resolution in F1 (minimum ~64)
BB homodec during t1 (homodec)	Select yes/no for homonuclear decoupling in F1
Selection bandwidth	Set from previously acquired selexcit or type in specific values
Steady State (ss)	Set from "Pulse Sequence" panel, turn on/off gradient cleanup between scans

NOTE

7 Selective 2D - Sel2D Processing

Processing

Automated processing is turned on by default, and the parameters are set to reasonable values, such that the resulting data after the acquisition usually require no further adjustment, except for minor manual phasing changes that may be required, as the ROE peaks are negative. The "Process" tab/"Basic" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (1k x 1k is the default), as well as a check box to turn on/off linear prediction and a pull-down to control the extent of linear prediction (default is 2*ni). Menus to quickly change the weighting functions in F2/F1 are also present (defaults are gaussians); the parameters for the weighting functions are calculated automatically from the acquisition time and number of increments. More processing details are found under some of the other "Process" panels, such as the "Default", "Weighting", and "More 2D" panels.

Tips, tricks, and next steps

- Spectral width (sw) setting transfers from a PROTON if the (HH)bsROESY is set up from this experiment. The F1 band is then selected interactively. Optimized selected bandwidth, sw, and receiver gain settings transfer from a selexcit if the (HH)bsROESY is set up from this experiment.
- The default number of "steady state" or "dummy scans" that are acquired before data acquisition to establish sample equilibrium is 32, which works for most samples. This value is changed on the "Acquisition" panel of the "Acquire" tab if necessary.
- The default parameters use a Grad-90-Grad steady state between scans, which helps cleanup un-relaxed magnetization. This can result in much cleaner spectra, especially when using shorter acquisition times and d1 relaxation delays (defaults are 0.15s and 1s, respectively).
- The homonuclear decoupling option (homodec) along F1 necessitates that the selected resonances do not have mutual homonuclear coupling among themselves.

- A mixing time of 200ms is a good starting place for most small molecules. Very weak ROE interactions may require longer mixing times (up to \sim 500ms), but keep the mixing time shorter as longer spinlocks may result in sample heating. It is a good idea not to exceed a 500ms spinlock.
- Because the mixing time for the (HH)bsROESY is limited, weaker correlations may not be observable. (HH)bsROESY is the experiment of choice over (HH)bsNOESY for medium-sized molecules (MW ~800-1000 depending on the molecule and spectrometer frequency), as they can exhibit zero or very small NOEs. One may consider running (HH)bsNOESY experiments (which can be run with longer mixing times) by (i) choosing a more viscous solvent such as d_6 -DMSO or d_6 -DMSO with ~10-20% D₂O (which results in slower molecular tumbling and hence generates a positive NOE enhancement like larger molecules), (ii) selecting a lower temperature (if the solvent allows it), or (iii) running the experiment on a spectrometer with higher field strength (if available).
- Crosspeaks in the (HH)bsROESY spectrum that have the same phase as the diagonal may arise from chemical exchange during the ROE mixing time, or due to TOCSY-type correlations (couplings). The exchange crosspeaks provide information about inter-converting molecular conformations and can be used to recognize such molecular dynamic processes.

A. Bax, D. G. Davis, J. Magn. Reson. 63 (1985) 207-213. (ROESY)

T. L. Hwang, A. J. Shaka, J. Am. Chem. Soc 114 (1992) 3157-3159. (EASY-ROESY)

A. Kaerner, D. L. Rabenstein, Magn. Reson. Chem. 36 (1998) 601-607. (Band Selective ROESY)

(HH)bsTOCSY

General description and usage

Description:

Two Dimensional total J-correlation spectroscopy for scalar coupled spin systems with a zero-quantum filter for artifact suppression and band-selection in F1.

Usage:

This experiment produces a 2-dimensional spectrum with peaks along the diagonal corresponding to the peaks in a 1D PROTON and crosspeaks between several protons in a scalar coupled spin system. This experiment has an added feature above the zTOCSY of band-selection in F1, which is an efficient way to increase the resolution in the F1 dimension without adding a large numbers of increments and, hence, experiment time. There is an added experimental option for homonuclear decoupling in F1 to further improve the resolution. The (HH)bsTOCSY can be very useful to obtain high-resolution through-bond correlations to a overlapped area of the spectrum, for example the a-proton region of peptides. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Parameter	Description
Spectral Width (sw)	Set from previously acquired PROTON*
Acquisition time (at)	Set from "Pulse Sequence" panel, controls the resolution in F2, default 0.15s
Relaxation time (d1)	Set from "Acquisition" panel, controls the delay between scans
Number of scans (nt)	Select typical choices from pull down menu*
Spinlock Duration (mixT)	Select from pull down menu- 80ms works best for large spin systems*
t1 Increments (ni)	Select typical choices from pull down menu*- controls the resolution in F1 (minimum ~64)
BB homodec during t1 (homodec)	Select yes/no for homonuclear decoupling in F1
Selection bandwidth	Set from previously acquired selexcit or type in specific values
Spinlock Pattern	Pull-down menu on the "Pulse Sequence" panel- dipsi2 or dipsi3
Steady State (ss)	Set from "Pulse Sequence" panel, turn on/off gradient cleanup between scans

NOTE

Processing

Automated processing is turned on by default, and the parameters are set to reasonable values, such that the resulting data after the acquisition usually require no further adjustment. The "Process" tab/"Basic" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (1k x 1k is the default), as well as a check box to turn on/off linear prediction and a pull-down to control the extent of linear prediction (default is 2*ni). Menus to quickly change the weighting functions in F2/F1 are also present (defaults are gaussians); the parameters for the weighting functions are calculated automatically from the acquisition time and number of increments. More processing details are found under some of the other "Process" panels, such as the "Default", "Weighting", and "More 2D" panels.

Tips, tricks, and next steps

- Spectral width (sw) setting transfers from a PROTON if the (HH)bsTOCSY is set up from this experiment. The F1 band is then selected interactively. Optimized selected bandwidth, sw, and receiver gain settings transfer from a selexcit if the (HH)bsTOCSY is set up from this experiment.
- The default number of "steady state" or "dummy scans" that are acquired before data acquisition to establish sample equilibrium is 32, which works for most samples. This value is changed on the "Acquisition" panel of the "Acquire" tab if necessary.

- The homonuclear decoupling option (homodec) along F1 necessitates that the selected resonances do not have mutual homonuclear coupling among themselves.
- The spinlock time (in addition to the magnitude of the coupling constants) ultimately controls how far along the spin system the correlations extend. Use spinlock durations exceeding 150ms with caution, as this can result in sample heating. The efficiency of the TOCSY transfer is directly proportional to the size of the coupling constants between the pairs of protons. To show primarily vicinal and geminal couplings, select a shorter spinlock time, for example, 30ms or less.
- The DIPSI2 spinlock pattern is a good choice for small molecules and the DIPSI3 is typically used for larger molecules
- The default parameters use a Grad-90-Grad steady state between scans, which helps cleanup un-relaxed magnetization. This can result in much cleaner spectra, especially when using shorter acquisition times and d1 relaxation delays (defaults are 0.15s and 1s, respectively).
- The (HH)bsTOCSY experiment contains a zero-quantum filter, and usually results in cleaner spectra. The zero-quantum suppression filter is switched on by default.

A. Bax, D. G. Davis, J. Magn. Reson. 63 (1985) 355-360. (TOCSY with MLEV17)

J. Cavanaugh, M. Rance, J. Magn. Reson. 96 (1992) 670-678. (TOCSY with DIPSI2)

V. V. Krishnamurthy, Magn. Reson. Chem. 35 (1997) 9-12. (Band Selective TOCSY)

M. J. Trippleton, J. Keeler, Angew. Chem. Int. Ed. 42 (2003) 3938-3941. (Zero Quantum Suppression)

(HH)bsNOESY

General description and usage

Description:

Two Dimensional through-space correlation spectroscopy with band-selection in F1.

Usage:

This experiment produces a 2-dimensional spectrum with peaks along the diagonal corresponding to the peaks in a 1D PROTON and crosspeaks between protons that are close in space (typically <4 Å). This experiment has an added feature above the NOESY of band-selection in F1, which is an efficient way to increase the resolution in the F1 dimension without adding a large number of increments and, hence, experiment time. There is an added experimental option for homonuclear decoupling in F1 to further improve the resolution. The (HH)bsNOESY can be very useful to obtain high-resolution through-space correlations to a overlapped area of the spectrum, for example the a-proton region of peptides. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Parameters	Description
Spectral Width (sw)	Set from previously acquired PROTON*
Acquisition time (at)	Set from "Pulse Sequence" panel, controls the resolution in F2, default 0.15s
Relaxation time (d1)	Set from "Acquisition" panel, controls the delay between scans
Number of scans (nt)	Select typical choices from pull down menu*
NOE Mixing time (mixN)	Select from pull down menu- 500ms works well as a starting point*
t1 Increments (ni)	Select typical choices from pull down menu*- controls the resolution in F1 (minimum ~64)
BB homodec during t1 (homodec)	Select yes/no for homonuclear decoupling in F1
Selection bandwidth	Set from previously acquired selexcit or type in specific values
Steady State (ss)	Set from "Pulse Sequence" panel, turn on/off gradient cleanup between scans

NOTE

7 Selective 2D - Sel2D Processing

Processing

Automated processing is turned on by default, and the parameters are set to reasonable values, such that the resulting data after the acquisition usually require no further adjustment, except for minor manual phasing changes that may be required, as the NOE peaks are negative for smaller molecules. The "Process" tab/"Basic" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (1k x 1k is the default), as well as a check box to turn on/off linear prediction and a pull-down to control the extent of linear prediction (default is 2*ni). Menus to quickly change the weighting functions in F2/F1 are also present (defaults are gaussians); the parameters for the weighting functions are calculated automatically from the acquisition time and number of increments. More processing details are found under some of the other "Process" panels, such as the "Default", "Weighting", and "More 2D" panels.

Tips, tricks, and next steps

- Spectral width (sw) setting transfers from a PROTON if the (HH)bsNOESY is set up from this experiment. The F1 band is then selected interactively. Optimized selected bandwidth, sw, and receiver gain settings transfer from a selexcit if the (HH)bsNOESY is set up from this experiment.
- The default number of "steady state" or "dummy scans" that are acquired before data acquisition to establish sample equilibrium is 32, which works for most samples. This value is changed on the "Acquisition" panel of the "Acquire" tab if necessary.
- The homonuclear decoupling option (homodec) along F1 necessitates that the selected resonances do not have mutual homonuclear coupling among themselves.
- The default parameters use a Grad-90-Grad steady state between scans, which helps cleanup un-relaxed magnetization. This can result in much cleaner spectra, especially when using shorter acquisition times and d1 relaxation delays (defaults are 0.15s and 1s, respectively).
- The default parameters use a Grad-90-Grad steady state between scans, which helps cleanup un-relaxed magnetization. This can result in much cleaner spectra, especially when using shorter acquisition times (at) and relaxation delays (d1) (defaults are 0.15s and 1s, respectively).
- A mixing time of 500ms is a good starting place for most small molecules. Very small molecules and/or weak NOE interactions may require longer mixing times (up to ~1s). Longer mixing times, however, increase the possibility of spin diffusion for larger molecules, a situation where the magnetization is transferred through space, and then through coupling, resulting in spurious correlations between protons. The NOE correlation can be confirmed by acquiring a build-up curve, whereby the mixing time is slowly increased in 50-100ms increments until the NOE intensity ceases to increase and levels off. This is the optimal mixing time.
- Medium-sized molecules (MW ~500 depending on the molecule and spectrometer frequency) can exhibit zero or very small NOEs. Consider acquiring a (HH)bsROESY for these molecules. Alternatively one may consider, (i) choosing a more viscous solvent such as d₆-DMSO or d₆-DMSO with ~10-20% D₂O (which results in slower molecular tumbling and hence generates a positive NOE enhancement like larger molecules), (ii) selecting a lower temperature (if the solvent allows it), or (iii) running the experiment on a spectrometer with higher field strength (if available).
- Small molecules may have crosspeaks arising from chemical exchange during the NOE mixing time and have the same phase as the diagonal. The exchange crosspeaks provide information about inter-converting molecular conformations and can be used to recognize such molecular dynamic processes.
- (HH)bsNOESY spectra may sometimes contain signals with partial antiphase character. Zero quantum suppression is embedded (and switched on by default) into the bsNOESY pulse sequence to suppress such artifacts.

References:

S. Macura, Y. Huang, D. Suter, R. R. Ernst, J. Magn. Reson. 43 (1981) 259-281. (NOESY)

K. Stott, J. Stonehouse, J. Keeler, T. L. Hwang, A. J. Shaka, J. Am. Chem. Soc. 117 (1995) 4199-4200. (Excitation Sculpting)

7 Selective 2D - Sel2D

Tips, tricks, and next steps

M. J. Trippleton, J. Keeler, Angew. Chem. Int. Ed. 42 (2003) 3938-3941. (Zero Quantum Suppression)

Agilent VnmrJ 4 Experiment Guide

8

Heteronuclear CRISIS2- (HC)Crisis2

(HC)Crisis2 Tab 294 c2hsqcse 296 c2hsqc 300 gc2h2bcme 304 gc2h2bc 308 gc2hmbcme 312 gc2hmbc 318 gc2hsqcse 322 gc2hsqc 326

8 Heteronuclear CRISIS2- (HC)Crisis2 (HC)Crisis2 Tab

(HC)Crisis2 Tab

The (HC)Crisis2 experiments are a suite of commonly-used heteronuclear 2D experiments that differ by having bip (broadband inversion pulse) pulses or adiabatic pulses in both the 13 C and 1 H channels. For all the experiments in this tab, you can use either bip or adiabatic inversion pulses in one or both channels by the appropriate selection of the bipflg parameter.

The bipflg parameter value typically has two characters. The first character represents channel 1 (1H) and the 2^{nd} character represents channel 2 (13C). A value of "y" uses bip inversion pulse while a value of "n" uses adiabatic inversion pulses. The advantage of adiabatic pulses is that they are tunable to any specific bandwidth using Pbox utility while the bip pulse shapes are supplied for a given bandwidth and duration, Setup and use of all of these experiments is exactly the same as the corresponding experiments found in the J1(CH)corr (Chapter 4) and the Jn(CH)corr (Chapter 5) tabs.

These experiments can be particularly useful when acquiring a collection of samples in automation that may adversely and variably affect the probe tuning/calibrations because of variations in salt concentrations, different solvents, etc. The bip pulses can compensate for imperfect calibrations, resulting in good data quality under these difficult conditions. Crisis2 experiments, because of their broadband inversion pulses on both channels, are also the best choice for 19F-X correlation.

Experiment Selector 🛛 🐥 🗙		
HF_Expts (HC)Crisis2	Hadamard	
Sel2D Dosy 2D Dosy 3D		
Jn(CH)corr (H)Sel1D (HC)HetToxys		
Service (HH)Homo2D	JSpectra J1(CH)corr	
Common Std 1D (C	C)corr System Studies	
c2hsqcse	c2hsqc	
gc2h2bcme	gc2h2bc	
gc2hmbcme	gc2hmbc	
gc2hsqcse	gc2hsqc	

8 Heteronuclear CRISIS2- (HC)Crisis2 c2hsqcse

c2hsqcse

General description and usage

Description:

Two Dimensional heteronuclear single-quantum 1-bond J-correlation spectroscopy with bip and/or adiabatic 180° pulses and sensitivity enhancement.

Usage:

The c2hsqcse experiment is used to acquire a 2-dimensional spectrum to correlate protons with directly attached carbons. The CRISIS2 (c2) version of this experiment uses either bip or adiabatic 1800 pulses in both channels. The experiment is very useful for proton and carbon assignments, because if the proton assignment is known, the carbon assignment can be deduced directly from this data and vice versa. For structure elucidation, carbon chemical shifts are particularly useful as they are highly sensitive to local functional groups and can be more reliably predicted. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Key parameters

Parameter	Description
Spectral Width (sw)	Set from previously acquired PROTON*
Acquisition time (at)	Set from "Pulse Sequence" panel, controls the resolution in F2, default 0.15s
F1 Nucleus (dn)	Pull- down menu to set F1 nucleus to 13 C, 15 N, or other *
C13 Spectral Width (ppm)	Type in desired chemical shift range for F1 dimension
Scans per t1 increment (nt)	Select typical choices from pull down menu*
t1 Increments (ni)	Select typical choices from pull down menu*- controls the resolution in F1 (minimum ~64)
One-Bond J1xh (j1xh)	Set value for the average $^1\mathrm{J}_{\mathrm{X},\mathrm{H}^{-}}$ 146 Hz works well for many carbons
H1-C13 Multiplicity Editing	Check box to turn on/off multiplicity editing
Steady State (ss)	Set from "Pulse Sequence" panel, turn on/off gradient cleanup between scans
C12-H1 suppression	Set from "Pulse Sequence" panel- controls type of ¹² C suppression- default is TANGO-Gradient (highly recommended)

NOTE

Specific values for these parameters may be typed manually in the appropriate boxes on the "Acquisition" or "Pulse Sequence" panels.

8 Heteronuclear CRISIS2- (HC)Crisis2

Processing

Processing

Automated processing is turned on by default, and the parameters are set to reasonable values, such that the resulting data after the acquisition usually require no further adjustment. The "Process" tab/"Basic" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (1k x 1k is the default), as well as a check box to turn on/off linear prediction and a pull-down to control the extent of linear prediction (default is 4*ni). Menus to quickly change the weighting functions in F2/F1 are also present (defaults are gaussians); the parameters for the weighting functions are calculated automatically from the acquisition time and number of increments. More processing details are found under some of the other "Process" panels, such as the "Default", "Weighting", and "More 2D" panels.

Tips, tricks, and next steps

- Spectral width (sw) setting transfers from a PROTON if the c2hsqcse is set up from this experiment. Receiver gain (gain) is usually set to a high value (?30), unless the sample is extremely concentrated or ¹³C-labelled.
- To measure ${}^{1}\text{H}{}^{-13}\text{C}$ (or ${}^{1}\text{H}{}^{-}\text{X}$) coupling constants, the carbon decoupling can be turned off by entering "nnn" in the Channel 2 "Dec On/Off" entry on the "Channels" panel or alternatively by typing dm='nnn' on the command line.

- The default number of steady state scans (ss) that are acquired before data acquisition to establish sample equilibrium is 32, which works for most samples. However, higher power carbon decoupling may cause some perturbations that may necessitate more ss scans to reach equilibrium. This value is changed on the "Acquisition" panel of the "Acquire" tab if necessary.
- The default parameters use a Grad-90-Grad steady state between scans, which helps cleanup un-relaxed magnetization. This can result in much cleaner spectra, especially when using shorter acquisition times (at) and relaxation delays (d1) (defaults are 0.15s and 1s, respectively).
- Using the multiplicity editing feature results in a spectrum with the peaks from methylene-type carbons having the opposite phase to methyl and methine-type carbons. The experiment uses the CRISIS technique to minimize sensitivity loss due to unmatched coupling constants and echo time. CRISIS based multiplicity editing is on by default.
- The c2hsqcse experiment has comparable sensitivity to the gc2hsqcse, but due to t1 noise from strong signals such as t-butyl, may produce potentially less clean spectra than its gradient counterpart.
- The c2hsqcse uses adiabatic or bip 1800 carbon and proton pulses for much improved uniform inversion as well as for tolerance to RF inhomogeneity and/or pulse calibration imperfection.
- The c2hsqcse has a sensitivity enhancement feature which, in theory, can result in an increase of approximately a factor of 1-1.4 in sensitivity over c2hsqc.
- Datasets with moderate S/N are better processed with 2*ni linear prediction instead of the default (4*ni). Remember to reset the window function along F1 axis if linear prediction parameters are changed.

References:

R. D. Boyer, R. Johnson, K. Krishnamurthy, J. Magn. Reson. 165 (2003) 253-259 (gHSQCAD / CRISIS-gHSQC)

H. Hu, K. Krishnamurthy, Magn. Reson. Chem. 46 (2008) 683-689. (CRISIS2 with Multiplicity Editing)

8 Heteronuclear CRISIS2- (HC)Crisis2 c2hsqc

c2hsqc

General description and usage

Description:

Two Dimensional heteronuclear single-quantum 1-bond J-correlation spectroscopy with bip and/or adiabatic 180° pulses.

Usage:

The c2hsqc experiment is used to acquire a 2-dimensional spectrum to correlate protons with directly attached carbons. The CRISIS2 (c2) version of this experiment uses either bip or adiabatic 180° pulses in both channels. The experiment is very useful for proton and carbon assignments, because if the proton assignment is known, the carbon assignment can be deduced directly from this data and vice versa. For structure elucidation, carbon chemical shifts are particularly useful as they are highly sensitive to local functional groups and can be more reliably predicted. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Key parameters

Parameters	Description
Spectral Width (sw)	Set from previously acquired PROTON*
Acquisition time (at)	Set from "Pulse Sequence" panel, controls the resolution in F2, default 0.15s
F1 Nucleus (dn)	Pull- down menu to set F1 nucleus to ¹³ C, ¹⁵ N, or other*
C13 Spectral Width (ppm)	Type in desired chemical shift range for F1 dimension
Scans per t1 increment (nt)	Select typical choices from pull down menu*
t1 Increments (ni)	Select typical choices from pull down menu*- controls the resolution in F1 (minimum ~64)
One-Bond J1xh (j1xh)	Set value for the average $^1\mathrm{J}_{\mathrm{X},\mathrm{H}^{-}}$ 146 Hz works well for many carbons
H1-C13 Multiplicity Editing	Check box to turn on/off multiplicity editing
Steady State (ss)	Set from "Pulse Sequence" panel, turn on/off gradient cleanup between scans
C12-H1 suppression	Set from "Pulse Sequence" panel- controls type of ¹² C suppression- default is TANGO-Gradient (highly recommended)

NOTE

Specific values for these parameters may be typed manually in the appropriate boxes on the "Acquisition" or "Pulse Sequence" panels.

Defaults	Experiment: c2hsqc Solvent: cdcl3	Observe: H1 H1-C13 Correlation	
Vulse Sequence PRESAT MET Parameters Channels Flags Future Actions Overview	Acquisition Options F1 Nucleus 13 C13 Spectral Width (ppm) -10.0 Scans per t1 increment 4 11 increments 128 One-Bond Coupling 11xh 146.0 H1-C13 Multiplicity Editing Yes	Receiver Gain (dB): 30	

8 Heteronuclear CRISIS2- (HC)Crisis2 Processing

Processing

Automated processing is turned on by default, and the parameters are set to reasonable values, such that the resulting data after the acquisition usually require no further adjustment. The "Process" tab/"Basic" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (1k x 1k is the default), as well as a check box to turn on/off linear prediction and a pull-down to control the extent of linear prediction (default is 4*ni). Menus to quickly change the weighting functions in F2/F1 are also present (defaults are gaussians); the parameters for the weighting functions are calculated automatically from the acquisition time and number of increments. More processing details are found under some of the other "Process" panels, such as the "Default", "Weighting", and "More 2D" panels.

Tips, tricks, and next steps

- Spectral width (sw) setting transfers from a PROTON if the c2hsqc is set up from this experiment. Receiver gain (gain) is usually set to a high value (?30), unless the sample is extremely concentrated or ¹³C-labelled.
- To measure ${}^{1}\text{H}$ - ${}^{13}\text{C}$ (or ${}^{1}\text{H}$ -X) coupling constants, the carbon decoupling can be turned off by entering "nnn" in the Channel 2 "Dec On/Off" entry on the "Channels" panel or alternatively by typing dm='nnn' on the command line.
- The default number of steady state scans (ss) that are acquired before data acquisition to establish sample equilibrium is 32, which works for most samples. However, higher power carbon decoupling may cause some perturbations that may necessitate more ss scans to reach equilibrium. This value is changed on the "Acquisition" panel of the "Acquire" tab if necessary.
- The default parameters use a Grad-90-Grad steady state between scans, which helps cleanup un-relaxed magnetization. This can result in much cleaner spectra, especially when using shorter acquisition times (at) and relaxation delays (d1) (defaults are 0.15s and 1s, respectively).

- Using the multiplicity editing feature results in a spectrum with the peaks from methylene-type carbons having the opposite phase to methyl and methine-type carbons. The experiment uses the CRISIS technique to minimize sensitivity loss due to unmatched coupling constants and echo time. CRISIS based multiplicity editing is on by default.
- The c2hsqc experiment has a sensitivity advantage (factor of ~ 1.4) over the gc2hsqc, but due to t1 noise from strong signals such as t-butyl, may produce potentially less clean spectra than its gradient counterpart.
- The c2hsqc uses adiabatic or bip 180° carbon and proton pulses for much improved uniform inversion as well as for tolerance to RF inhomogeneity and/or pulse calibration imperfection.
- Datasets with moderate S/N are better processed with 2*ni linear prediction instead of the default (4*ni). Remember to reset the window function along F1 axis if linear prediction parameters are changed.

References:

R. D. Boyer, R. Johnson, K. Krishnamurthy, J. Magn. Reson. 165 (2003) 253-259 (gHSQCAD / CRISIS-gHSQC)

H. Hu, K. Krishnamurthy, Magn. Reson. Chem. 46 (2008) 683-689. (CRISIS2 with Multiplicity Editing)

8 Heteronuclear CRISIS2- (HC)Crisis2 gc2h2bcme

gc2h2bcme

General description and usage

Description:

Two Dimensional heteronuclear 2-bond J-correlation spectroscopy with bip and/or adiabatic 180° pulses, gradient coherence selection, and multiplicity editing.

Usage:

The gc2h2bcme experiment is used to acquire a 2-dimensional spectrum to correlate protons to carbons over 2 bonds. The CRISIS2 (c2) version of this experiment uses either bip or adiabatic 1800 pulses in both channels. Although the gc2h2bcme is less sensitive than the gc2hmbcme, this experiment is useful as supplemental information to distinguish between 2- and 3-bond correlations. This is an edited experiment acquired as an array of 2 spectra and needs to be processed in two different ways to generate the edited 2D spectra. Note that the experiment is constant time in F1, so the constant time delay (BigT) determines the maximum number of increments (ni). All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Key parameters

Parameter	Description
Spectral Width (sw)	Set from previously acquired PROTON*
Acquisition time (at)	Set from "Pulse Sequence" panel, controls the resolution in F2, default 0.15s
F1 Nucleus (dn)	Pull- down menu to set F1 nucleus to 13 C, 15 N, or other*
C13 Spectral Width (ppm)	Type in desired chemical shift range for F1 dimension
Scans per t1 increment (nt)	Select typical choices from pull down menu*
t1 Increments (ni)	Type in value- controls the resolution in F1 (note maximum allowed from the constant time delay (BigT)
Multiple-Bond Jnxh (jnxh)	Pull-down menu to set value for the average ${}^nJ_{X,H}$ - 8 Hz works well for most molecules
Constant Time (BigT)	Type in value on the "Pulse Sequence" panel for constant time delay- 0.022ms (default) works for most samples
Steady State (ss)	Set from "Pulse Sequence" panel, turn on/off gradient cleanup between scans
C12-H1 suppression	Set from "Pulse Sequence" panel- turn on/off TANGO-gradient suppression- default is on

NOTE

Specific values for these parameters may be typed manually in the appropriate boxes on the "Acquisition" or "Pulse Sequence" panels.

8 Heteronuclear CRISIS2- (HC)Crisis2 Processing

Processing

This is an edited experiment acquired as an array of 2 spectra and needs to be processed in two different ways to generate the edited 2D spectra. The "Process" tab/"Default" panel has three buttons under the "Transform" heading to select the desired subspectrum. The "Process" tab/"Basic" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (2k x 1k is the default), as well as a check box to turn on/off linear prediction and a pull-down to control the extent of linear prediction (default is 4*ni). Menus to quickly change the weighting functions in F2/F1 are also present; the parameters for the weighting functions are calculated automatically from the acquisition time and number of increments. More processing details are found under some of the other "Process" panels, such as the "Default", "Weighting", and "More 2D" panels.

Tips, tricks, and next steps

- Spectral width (sw) setting transfers from a PROTON if the gc2h2bcme is set up from this experiment. Receiver gain (gain) is usually set to a high value (?30), unless the sample is extremely concentrated or ¹³C-labelled.
- The default number of steady state scans (ss) that are acquired before data acquisition to establish sample equilibrium is 32, which works for most samples. This value is changed on the "Acquisition" panel of the "Acquire" tab if necessary.
- The default parameters use a Grad-90-Grad steady state between scans, which helps cleanup un-relaxed magnetization. This can result in much cleaner spectra, especially when using shorter acquisition times (at) and relaxation delays (d1) (defaults are 0.15s and 1s, respectively).
- The gc2h2bcme is in principle a gHMQC-COSY type experiment. By this very nature, it can only show 2-bond correlations to protonated carbons but not for quaternary carbons. A 22ms bigT delay is an optimal value for COSY magnetization transfer.
- The gc2h2bcme experiment is specialized to show only 2-bond correlations, but it is less sensitive than the gc2hmbcme experiment. As such, the gc2h2bcme is best used as supplemental information to the gc2hmbcme data to distinguish between 2- and 3-bond correlations.

- The multiplicity-editing feature uses the CRISIS technique that relies on a hypothetical relationship between one-bond coupling constants and carbon chemical shifts. Carbons with coupling constants that deviate significantly from this relationship result in imperfect editing.
- As the gc2h2bcme is acquired as an array of two spectra, it takes twice as long to acquire and there is a small sensitivity loss with the multiplicity-editing.
- The gc2h2bcme uses adiabatic or bip 180° carbon and proton pulses for much improved uniform inversion as well as for tolerance to RF inhomogeneity and/or pulse calibration imperfection

References:

A. J. Benie, O. W. Sorensen, Magn. Reson. Chem. 44 (2006) 739-743. (Multiplicity Edited HMBC)

N. T. Nyberg, J. O. Duus, O. W. Sorensen, J. Am. Chem. Soc. 127 (2007) 6154-6155. (H2BC)

H. Hu, K. Krishnamurthy, Magn. Reson. Chem. 46 (2008) 683-689. (CRISIS2 with Multiplicity Editing)

8 Heteronuclear CRISIS2- (HC)Crisis2 gc2h2bc

gc2h2bc

General description and usage

Description:

Two Dimensional heteronuclear 2-bond J-correlation spectroscopy with bip and/or adiabatic 180° pulses and gradient coherence selection.

Usage:

The gH2BCAD experiment is used to acquire a 2-dimensional spectrum to correlate protons to carbons over 2 bonds. The CRISIS2 (c2) version of this experiment uses either bip or adiabatic 180° pulses in both channels. Although the gc2h2bcme is less sensitive than the gc2hmbcme, this experiment is useful as supplemental information to distinguish between 2- and 3-bond correlations. Note that the experiment is constant time in F1, so the constant time delay (BigT) determines the maximum number of increments (ni). All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Key parameters

Parameter	Description
Spectral Width (sw)	Set from previously acquired PROTON*
Acquisition time (at)	Set from "Pulse Sequence" panel, controls the resolution in F2, default 0.15s
F1 Nucleus (dn)	Pull- down menu to set F1 nucleus to 13 C, 15 N, or other*
C13 Spectral Width (ppm)	Type in desired chemical shift range for F1 dimension
Scans per t1 increment (nt)	Select typical choices from pull down menu*
t1 Increments (ni)	Type in value- controls the resolution in F1 (note maximum allowed from the constant time delay (BigT)
Multiple-Bond Jnxh (jnxh)	Pull-down menu to set value for the average ${}^nJ_{X,H}$ - 8 Hz works well for most molecules
Constant Time (BigT)	Type in value on the "Pulse Sequence" panel for constant time delay- 0.022ms (default) works for most samples
Steady State (ss)	Set from "Pulse Sequence" panel, turn on/off gradient cleanup between scans
C12-H1 suppression	Set from "Pulse Sequence" panel- turn on/off TANGO-gradient suppression- default is on

NOTE

Specific values for these parameters may be typed manually in the appropriate boxes on the "Acquisition" or "Pulse Sequence" panels.

8 Heteronuclear CRISIS2- (HC)Crisis2 Processing

Processing

Automated processing is turned on by default, and the parameters are set to reasonable values, such that the resulting data after the acquisition usually require no further adjustment. The "Process" tab/"Basic" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (2k x 1k is the default), as well as a check box to turn on/off linear prediction and a pull-down to control the extent of linear prediction (default is 4*ni). Menus to quickly change the weighting functions in F2/F1 are also present; the parameters for the weighting functions are calculated automatically from the acquisition time and number of increments. More processing details are found under some of the other "Process" panels, such as the "Default", "Weighting", and "More 2D" panels.

Tips, tricks, and next steps

- Spectral width (sw) setting transfers from a PROTON if the gc2h2bc is set up from this experiment. Receiver gain (gain) is usually set to a high value (\geq 30), unless the sample is extremely concentrated or ¹³C-labelled.
- The default number of steady state scans (ss) that are acquired before data acquisition to establish sample equilibrium is 32, which works for most samples. This value is changed on the "Acquisition" panel of the "Acquire" tab if necessary.
- The default parameters use a Grad-90-Grad steady state between scans, which helps cleanup un-relaxed magnetization. This can result in much cleaner spectra, especially when using shorter acquisition times (at) and relaxation delays (d1) (defaults are 0.15s and 1s, respectively).
- The gc2h2bc is in principle a gHMQC-COSY type experiment. By this very nature, it can only show 2-bond correlations to protonated carbons but not for quaternary carbons. A 22ms bigT delay is an optimal value for COSY magnetization transfer.
- The gc2h2bc experiment is specialized to show only 2-bond correlations, but it is less sensitive than the gc2hmbc experiment. As such, the gc2h2bc is best used as supplemental information to the gc2hmbc data to distinguish between 2- and 3-bond correlations.

• The gc2h2bc uses adiabatic or bip 180° carbon and proton pulses for much improved uniform inversion as well as for tolerance to RF inhomogeneity and/or pulse calibration imperfection.

References:

N. T. Nyberg, J. O. Duus, O. W. Sorensen, J. Am. Chem. Soc. 127 (2007) 6154-6155. (H2BC)

R. E. Hurd, J. Magn. Reson. 87 (1990) 422-428. (Gradient based Coherence Selection)

E. Kupce, R. Freeman, J. Magn. Reson. Ser. A 117 (1995) 246-256. (Adiabatic Pulses)

H. Hu, K. Krishnamurthy, Magn. Reson. Chem. 46 (2008) 683-689. (CRISIS2 with Multiplicity Editing)

8 Heteronuclear CRISIS2- (HC)Crisis2 gc2hmbcme

gc2hmbcme

General description and usage

Description:

Two Dimensional heteronuclear multiple-bond J-correlation spectroscopy with bip and/or adiabatic 180° pulses, gradient coherence selection, and multiplicity editing.

Usage:

The gc2hmbcme experiment is used to acquire a 2-dimensional spectrum to correlate protons to carbons, usually over 2-3 bonds with the 3-bond correlations typically being stronger. The CRISIS2 (c2) version of this experiment uses either bip or adiabatic 1800 pulses in both channels. The experiment is highly useful for structure elucidation as the longer range correlations allow connectivities between isolated proton spin systems to be identified. This is an edited experiment acquired as an array of 2 spectra and needs to be processed in two different ways to generate the edited 2D spectra. For structure elucidation, carbon chemical shifts are particularly useful as they are highly sensitive to local functional groups and can be reliably predicted with software. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Key parameters

Parameter	Description
Spectral Width (sw)	Set from previously acquired PROTON*
Acquisition time (at)	Set from "Pulse Sequence" panel, controls the resolution in F2, default 0.15s
F1 Nucleus (dn)	Pull- down menu to set F1 nucleus to ¹³ C, ¹⁵ N, or other*
C13 Spectral Width (ppm)	Type in desired chemical shift range for F1 dimension
Scans per t1 increment (nt)	Select typical choices from pull down menu*
t1 Increments (ni)	Select typical choices from pull down menu*- controls the resolution in F1 (minimum ~64)
Multiple-Bond Jnxh (jnxh)	Pull-down menu to set value for the average $^n J_{X,H_{-}} 8 \text{Hz}$ works well for most molecules
One-Bond suppression	Set from "Pulse Sequence" panel- turn on/off suppression of one-bond correlations- default is on
Steady State (ss)	Set from "Pulse Sequence" panel, turn on/off gradient cleanup between scans

NOTE

Specific values for these parameters may be typed manually in the appropriate boxes on the "Acquisition" or "Pulse Sequence" panels.

8 Heteronuclear CRISIS2- (HC)Crisis2

Processing

Processing

This is an edited experiment acquired as an array of 2 spectra and needs to be processed in two different ways to generate the edited 2D spectra. The "Process" tab/"Default" panel has three buttons under the "Transform" heading to select the desired subspectrum. The "Process" tab/"Basic" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (2k x 1k is the default), as well as a check box to turn on/off linear prediction and a pull-down to control the extent of linear prediction (default is 4^* ni). Menus to quickly change the weighting functions in F2/F1 are also present (defaults are gaussian in F1 and sqsinebell in F2); the parameters for the weighting functions are calculated automatically from the acquisition time and number of increments. More processing details are found under some of the other "Process" panels, such as the "Default", "Weighting", and "More 2D" panels. It is important to note that this experiment employs mix-mode processing, with the F2 dimension absolute value and F1 phase-sensitive. This arrangement allows for the best resolution and sensitivity combination.

Tips, tricks, and next steps

- Spectral width (sw) setting transfers from a PROTON if the gc2hmbcme is set up from this experiment. Receiver gain (gain) is usually set to a high value (?30), unless the sample is extremely concentrated or ¹³C-labelled.
- The default number of steady state scans (ss) that are acquired before data acquisition to establish sample equilibrium is 32, which works for most samples. This value is changed on the "Acquisition" panel of the "Acquire" tab if necessary.
- The default parameters use a Grad-90-Grad steady state between scans, which helps cleanup un-relaxed magnetization. This can result in much cleaner spectra, especially when using shorter acquisition times (at) and relaxation delays (d1) (defaults are 0.15s and 1s, respectively).
- The multiplicity-editing feature uses the CRISIS technique that relies on a hypothetical relationship between one-bond coupling constants and carbon chemical shifts. Carbons with coupling constants that deviate significantly from this relationship result in imperfect editing.
- As the gHMBCmeAD is acquired as an array of two spectra, it takes twice as long to acquire and there is a small sensitivity loss with the multiplicity-editing.
- The experiment features a 2-step low-pass filter that can eliminate undesired crosspeaks from one-bond couplings. Select two coupling constants on the "Pulse Sequence" panel around which one-bond couplings are eliminated (default values are 165 and 130 Hz). These filters are rather narrow-band, however, and if the spread of coupling constants is such that some couplings lie considerably outside these values (for example 115 or 145 Hz), its signals may still be visible in the spectrum. As HMBC-type spectra are recorded without ¹³C decoupling, such signals can usually still be discerned from long-range crosspeaks by their one-bond splitting.
- The gc2hmbcme uses adiabatic or bip 180° carbon and proton pulses for much improved uniform inversion as well as for tolerance to RF inhomogeneity and/or pulse calibration imperfection.

References:

A. J. Benie, O. W. Sorensen, Magn. Reson. Chem. 44 (2006) 739-743. (Multiplicity Edited HMBC)

8 Heteronuclear CRISIS2- (HC)Crisis2

Tips, tricks, and next steps

H. Hu, K. Krishnamurthy, Magn. Reson. Chem. 46 (2008) 683-689. (CRISIS2 with Multiplicity Editing)

Heteronuclear CRISIS2- (HC)Crisis2 8 Tips, tricks, and next steps

8 Heteronuclear CRISIS2- (HC)Crisis2 gc2hmbc

gc2hmbc

General description and usage

Description:

Two Dimensional heteronuclear multiple-bond J-correlation spectroscopy with bip and/or adiabatic 180° pulses and gradient coherence selection.

Usage:

The gc2hmbc experiment is used to acquire a 2-dimensional spectrum to correlate protons to carbons, usually over 2-3 bonds with the 3-bond correlations typically being stronger The CRISIS2 (c2) version of this experiment uses either bip or adiabatic 180° pulses in both channels. The experiment is highly useful for structure elucidation as the longer range correlations allow connectivities between isolated proton spin systems to be identified. For structure elucidation, carbon chemical shifts are particularly useful as they are highly sensitive to local functional groups and can be reliably predicted with software. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Key parameters

Parameters	Description
Spectral Width (sw)	Set from previously acquired PROTON*
Acquisition time (at)	Set from "Pulse Sequence" panel, controls the resolution in F2, default 0.15s
F1 Nucleus (dn)	Pull- down menu to set F1 nucleus to ¹³ C, ¹⁵ N, or other*
C13 Spectral Width (ppm)	Type in desired chemical shift range for F1 dimension
Scans per t1 increment (nt)	Select typical choices from pull down menu*
t1 Increments (ni)	Select typical choices from pull down menu*- controls the resolution in F1 (minimum ~64)
Multiple-Bond Jnxh (jnxh)	Pull-down menu to set value for the average ${}^n J_{X,H}$ - 8 Hz works well for most molecules
One-Bond suppression	Set from "Pulse Sequence" panel- turn on/off suppression of one-bond correlations- default is on
Steady State (ss)	Set from "Pulse Sequence" panel, turn on/off gradient cleanup between scans

NOTE

Specific values for these parameters may be typed manually in the appropriate boxes on the "Acquisition" or "Pulse Sequence" panels.

8 Heteronuclear CRISIS2- (HC)Crisis2 Processing

Processing

Automated processing is turned on by default, and the parameters are set to reasonable values, such that the resulting data after the acquisition usually require no further adjustment. The "Process" tab/"Basic" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (2k x 1k is the default), as well as a check box to turn on/off linear prediction and a pull-down to control the extent of linear prediction (default is 4*ni). Menus to quickly change the weighting functions in F2/F1 are also present (defaults are gaussian in F1 and sqsinebell in F2); the parameters for the weighting functions are calculated automatically from the acquisition time and number of increments. More processing details are found under some of the other "Process" panels, such as the "Default", "Weighting", and "More 2D" panels. It is important to note that this experiment employs mix-mode processing, with the F2 dimension absolute value and F1 phase-sensitive. This arrangement allows for the best resolution and sensitivity combination.

Tips, tricks, and next steps

- Spectral width (sw) setting transfers from a PROTON if the gc2hmbc is set up from this experiment. Receiver gain (gain) is usually set to a high value (?30), unless the sample is extremely concentrated or ¹³C-labelled.
- The default number of steady state scans (ss) that are acquired before data acquisition to establish sample equilibrium is 32, which works for most samples. This value is changed on the "Acquisition" panel of the "Acquire" tab if necessary.
- The default parameters use a Grad-90-Grad steady state between scans, which helps cleanup un-relaxed magnetization. This can result in much cleaner spectra, especially when using shorter acquisition times (at) and relaxation delays (d1) (defaults are 0.15s and 1s, respectively).
- In general, the HMBC-type experiments have the best sensitivity of the Jn(CH)corr experiments- the other experiments provide specialized data for specific information types.

- The jnxh sets the optimal value of the proton-carbon coupling constant for detection. Using smaller values may increase the chances of seeing longer-range correlations, but at the expense of correlations with larger coupling constants, and, more importantly, at the expense of sensitivity loss. The CIGARAD experiment is better suited on a reasonably concentrated sample for detecting longer range correlations from a range of coupling constants, but at the expense of sensitivity.
- The experiment features a 2-step low-pass filter that can eliminate undesired crosspeaks from one-bond couplings. Select two coupling constants on the "Pulse Sequence" panel around which one-bond couplings are eliminated (default values are 165 and 130 Hz). These filters are rather narrow-band, however, and if the spread of coupling constants is such that some couplings lie considerably outside these values (for example 115 or 145 Hz), its signals may still be visible in the spectrum. As HMBC-type spectra are recorded without ¹³C decoupling, such signals can usually still be discerned from long-range crosspeaks by their one-bond splitting.
- The gc2hmbcme uses adiabatic or bip 180° carbon and proton pulses for much improved uniform inversion as well as for tolerance to RF inhomogeneity and/or pulse calibration imperfection.

References:

A. Bax, M. F. Summers, J. Am. Chem. Soc. 108 (1996) 2093-2094 (HMBC)

H. Hu, K. Krishnamurthy, Magn. Reson. Chem. 46 (2008) 683-689. (CRISIS2 with Multiplicity Editing)

8 Heteronuclear CRISIS2- (HC)Crisis2 gc2hsqcse

gc2hsqcse

General description and usage

Description:

Two Dimensional heteronuclear single-quantum 1-bond J-correlation spectroscopy with bip and/or adiabatic 180° pulses, sensitivity enhancement, and gradient coherence selection.

Usage:

The gc2hsqcse experiment is used to acquire a 2-dimensional spectrum to correlate protons with directly attached carbons. The CRISIS2 (c2) version of this experiment uses either bip or adiabatic 1800 pulses in both channels. The experiment is very useful for proton and carbon assignments, because if the proton assignment is known, the carbon assignment can be deduced directly from this data and vice versa. For structure elucidation, carbon chemical shifts are particularly useful as they are highly sensitive to local functional groups and can be more reliably predicted. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Key parameters

Parameter	Description
Spectral Width (sw)	Set from previously acquired PROTON*
Acquisition time (at)	Set from "Pulse Sequence" panel, controls the resolution in F2, default 0.15s
F1 Nucleus (dn)	Pull- down menu to set F1 nucleus to 13 C, 15 N, or other*
C13 Spectral Width (ppm)	Type in desired chemical shift range for F1 dimension
Scans per t1 increment (nt)	Select typical choices from pull down menu*
t1 Increments (ni)	Select typical choices from pull down menu*- controls the resolution in F1 (minimum ~64)
One-Bond J1xh (j1xh)	Set value for the average $^1J_{X,H^-}$ 146 Hz works well for many carbons
H1-C13 Multiplicity Editing	Check box to turn on/off multiplicity editing
Steady State (ss)	Set from "Pulse Sequence" panel, turn on/off gradient cleanup between scans
C12-H1 suppression	Set from "Pulse Sequence" panel- controls type of ¹² C suppression- default is TANGO-Gradient (highly recommended)

NOTE

Specific values for these parameters may be typed manually in the appropriate boxes on the "Acquisition" or "Pulse Sequence" panels.

8 Heteronuclear CRISIS2- (HC)Crisis2 Processing

Processing

Automated processing is turned on by default, and the parameters are set to reasonable values, such that the resulting data after the acquisition usually require no further adjustment. The "Process" tab/"Basic" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (1k x 1k is the default), as well as a check box to turn on/off linear prediction and a pull-down to control the extent of linear prediction (default is 4*ni). Menus to quickly change the weighting functions in F2/F1 are also present (defaults are gaussians); the parameters for the weighting functions are calculated automatically from the acquisition time and number of increments. More processing details are found under some of the other "Process" panels, such as the "Default", "Weighting", and "More 2D" panels.

Tips, tricks, and next steps

- Spectral width (sw) setting transfers from a PROTON if the gc2hsqcse is set up from this experiment. Receiver gain (gain) is usually set to a high value (?30), unless the sample is extremely concentrated or ¹³C-labelled.
- To measure ${}^{1}\text{H}$ - ${}^{13}\text{C}$ (or ${}^{1}\text{H}$ -X) coupling constants, the carbon decoupling can be turned off by entering "nnn" in the Channel 2 "Dec On/Off" entry on the "Channels" panel or alternatively by typing dm='nnn' on the command line.
- The default number of steady state scans (ss) that are acquired before data acquisition to establish sample equilibrium is 32, which works for most samples. However, higher power carbon decoupling may cause some perturbations that may necessitate more ss scans to reach equilibrium. This value is changed on the "Acquisition" panel of the "Acquire" tab if necessary.
- The default parameters use a Grad-90-Grad steady state between scans, which helps cleanup un-relaxed magnetization. This can result in much cleaner spectra, especially when using shorter acquisition times (at) and relaxation delays (d1) (defaults are 0.15s and 1s, respectively).

- Using the multiplicity editing feature results in a spectrum with the peaks from methylene-type carbons having the opposite phase to methyl and methine-type carbons. The experiment uses the CRISIS technique to minimize sensitivity loss due to unmatched coupling constants and echo time. CRISIS based multiplicity editing is on by default.
- The c2hsqcse experiment has a comparable sensitivity to the gc2hsqcse, but due to t1 noise from strong signals such as t-butyl, may produce potentially less clean spectra than its gradient counterpart.
- The gc2hsqcse uses adiabatic or bip 180° carbon and proton pulses for much improved uniform inversion as well as for tolerance to RF inhomogeneity and/or pulse calibration imperfection.
- The gc2hsqcse has a sensitivity enhancement feature which, in theory, can result in an increase of approximately a factor of 0.7-1.4 over c2hsqc and a factor of 1 to 2 over gc2hsqc.
- Datasets with moderate S/N are better processed with 2*ni linear prediction instead of the default (4*ni). Remember to reset the window function along F1 axis if linear prediction parameters are changed.

References:

G. Bodenhausen, D. J. Ruben, Chem. Phys. Lett. 69 (1980) 185-189. (HSQC)

A. G. Palmer III, J. Cavanagh, P. E. Wright, M. Rance, J. Magn. Reson. 93 (1991) 151-170. (HSQC)

H. Hu, K. Krishnamurthy, Magn. Reson. Chem. 46 (2008) 683-689. (CRISIS2 with Multiplicity Editing)

8 Heteronuclear CRISIS2- (HC)Crisis2 gc2hsqc

gc2hsqc

General description and usage

Description:

Two Dimensional heteronuclear single-quantum 1-bond J-correlation spectroscopy with bip and/or adiabatic 180° pulses and gradient coherence selection.

Usage:

The gc2hsqc experiment is used to acquire a 2-dimensional spectrum to correlate protons with directly attached carbons. The CRISIS2 (c2) version of this experiment uses either bip or adiabatic 180° pulses in both channels. The experiment is very useful for proton and carbon assignments, because if the proton assignment is known, the carbon assignment can be deduced directly from this data and vice versa. For structure elucidation, carbon chemical shifts are particularly useful as they are highly sensitive to local functional groups and can be more reliably predicted. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.
Key parameters

Parameter	Description
Spectral Width (sw)	Set from previously acquired PROTON*
Acquisition time (at)	Set from "Pulse Sequence" panel, controls the resolution in F2, default 0.15s
F1 Nucleus (dn)	Pull- down menu to set F1 nucleus to 13 C, 15 N, or other*
C13 Spectral Width (ppm)	Type in desired chemical shift range for F1 dimension
Scans per t1 increment (nt)	Select typical choices from pull down menu*
t1 Increments (ni)	Select typical choices from pull down menu*- controls the resolution in F1 (minimum ~64)
One-Bond J1xh (j1xh)	Set value for the average $^1J_{X,H^-}$ 146 Hz works well for many carbons
H1-C13 Multiplicity Editing	Check box to turn on/off multiplicity editing
Steady State (ss)	Set from "Pulse Sequence" panel, turn on/off gradient cleanup between scans
C12-H1 suppression	Set from "Pulse Sequence" panel- controls type of ¹² C suppression- default is TANGO-Gradient (highly recommended)

NOTE

Specific values for these parameters may be typed manually in the appropriate boxes on the "Acquisition" or "Pulse Sequence" panels.

Acquisition	Experiment: gc2hsqc Solvent: cdcl3	Observe: H1 H1-C13 Correlation	
ulse Sequence RESAT WET arameters channels lags uture Actions Overview	Acquisition Options F1 Nucleus C13 C13 Spectral Width (ppm) Scans per t1 increment t1 increments One-Bond Coupling J1xh H1-C13 Multiplicity Editing Yes No	Receiver Gain (dB): 30	

8 Heteronuclear CRISIS2- (HC)Crisis2 Processing

Processing

Automated processing is turned on by default, and the parameters are set to reasonable values, such that the resulting data after the acquisition usually require no further adjustment. The "Process" tab/"Basic" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (1k x 1k is the default), as well as a check box to turn on/off linear prediction and a pull-down to control the extent of linear prediction (default is 4*ni). Menus to quickly change the weighting functions in F2/F1 are also present (defaults are gaussians); the parameters for the weighting functions are calculated automatically from the acquisition time and number of increments. More processing details are found under some of the other "Process" panels, such as the "Default", "Weighting", and "More 2D" panels.

Tips, tricks, and next steps

- Spectral width (sw) setting transfers from a PROTON if the gc2hsqc is set up from this experiment. Receiver gain (gain) is usually set to a high value (?30), unless the sample is extremely concentrated or ¹³C-labelled.
- To measure ${}^{1}\text{H}$ - ${}^{13}\text{C}$ (or ${}^{1}\text{H}$ -X) coupling constants, the carbon decoupling can be turned off by entering "nnn" in the Channel 2 "Dec On/Off" entry on the "Channels" panel or alternatively by typing dm='nnn' on the command line.
- The default number of steady state scans (ss) that are acquired before data acquisition to establish sample equilibrium is 32, which works for most samples. However, higher power carbon decoupling may cause some perturbations that may necessitate more ss scans to reach equilibrium. This value is changed on the "Acquisition" panel of the "Acquire" tab if necessary.
- The default parameters use a Grad-90-Grad steady state between scans, which helps cleanup un-relaxed magnetization. This can result in much cleaner spectra, especially when using shorter acquisition times (at) and relaxation delays (d1) (defaults are 0.15s and 1s, respectively).

- Using the multiplicity editing feature results in a spectrum with the peaks from methylene-type carbons having the opposite phase to methyl and methine-type carbons. The experiment uses the CRISIS technique to minimize sensitivity loss due to unmatched coupling constants and echo time. CRISIS based multiplicity editing is on by default.
- The c2hsqc experiment has a sensitivity advantage (factor of ~ 1.4) over the gc2hsqc, but due to t1 noise from strong signals such as t-butyl, may produce potentially less clean spectra than its gradient counterpart.
- The gc2hsqc uses adiabatic or bip 180° carbon and proton pulses for much improved uniform inversion as well as for tolerance to RF inhomogeneity and/or pulse calibration imperfection.
- Datasets with moderate S/N are better processed with 2*ni linear prediction instead of the default (4*ni). Remember to reset the window function along F1 axis if linear prediction parameters are changed.

References:

G. Bodenhausen, D. J. Ruben, Chem. Phys. Lett. 69 (1980) 185-189. (HSQC)

A. G. Palmer III, J. Cavanagh, P. E. Wright, M. Rance, J. Magn. Reson. 93 (1991) 151-170. (HSQC)

H. Hu, K. Krishnamurthy, Magn. Reson. Chem. 46 (2008) 683-689. (CRISIS2 with Multiplicity Editing)

8 Heteronuclear CRISIS2- (HC)Crisis2

Tips, tricks, and next steps

Agilent VnmrJ 4 Experiment Guide

9

Hetero-TOCSY - (HC)HetToxys

(HC)HetToxys Tab 332 HSQCADTOXY 334 gHSQCADTOXY 340 HSQCTOXY 346 gHSQCTOXY 352 HMQCTOXY 358 gHMQCTOXY 364

9 Hetero-TOCSY - (HC)HetToxys (HC)HetToxys Tab

(HC)HetToxys Tab

The (HC)HetToxys family of experiments can be used to resolve ambiguous assignments and/or overlap issues that are not resolved after the analysis of a more common set of 2D experiments such as a zTOCSY and a gHSQCAD. These experiments provide two pieces of information; first, typically a correlation is generated that is the same as in the gHSQCAD, for example, "This proton is attached to that carbon". Second, a series of correlations are generated that are redundant in both F2, the proton dimension, and in F1, the carbon dimension. The information conveyed is "The proton at this chemical shift is coupled to a proton whose carbon is at that chemical shift".

The most sensitive experiment in the family is the HSQCADTOXY, which, along with the gHSQCADTOXY, has adiabatic 180° carbon pulses. The gradient enhanced version of the experiment does experience better artifact suppression, but at the expense of a loss of sensitivity (factor of ~1.4). The gradient enhanced version of these experiments can also suffer from additional sensitivity loss due to diffusion during the mixing time if the analyte is small and/or the solvent is non-viscous. Typically, consider using the non-gradient coherence selection version, with the HSQCADTOXY as the recommended choice. The non-adiabatic experiments in the HetToxy family, however, provide an option to invert or suppress only the responses directly attributed to the H-C pair (HSQC peaks), which can be advantageous for cases of severe overlap in the ¹H dimension.

The (HC)HetToxy family of experiments are very powerful for helping to solve structural problems with many classes of chemical substances wherever there is resonance overlap in the proton spectrum. In compounds such as peptides it is often useful to acquire HSQCADTOXY data for both H-C and H-N. Provided the ¹⁵N chemical shifts of each amide are resolved, it is possible to effectively separate the complete ¹H NMR spectrum for each amino acid in the F1 (¹⁵N) dimension. Subsequent consultation of the H-C HSQCADTOXY spectrum can make it straightforward to verify all assignments for the carbons as well.

Experiment Selector 🔍 🔍		
HF_Expts (HC)Crisis2 Hadamard		
Sel2D Dosy 2	D Dosy 3D	
Jn(CH)corr (H)Sel1	D (HC)HetToxys	
Service (HH)Homo2D	JSpectra J1(CH)corr	
Common Std 1D (C	C)corr System Studies	
HSQCADTOXY	gHSQCADTOXY	
нѕостоху	gHSQCTOXY	
НМQСТОХҮ	gHMQCTOXY	

HSQCADTOXY

General description and usage

Description:

Two Dimensional heteronuclear single-quantum 1-bond J-correlation spectroscopy with a TOCSY spinlock and adiabatic 180^o X-nuclei pulses.

Usage:

The HSQCADTOXY experiment is used to acquire a 2-dimensional spectrum to collect information correlating ${}^{1}\text{H}{}^{-1}\text{H}$ TOCSY and ${}^{13}\text{C}$ chemical shift information, for example, Proton A is in the same spin system as proton B at carbon chemical shift X. The experiment is useful to resolve overlapping spin systems in the ${}^{1}\text{H}{}^{-1}\text{H}$ TOCSY spectrum by spreading them out over the carbon (or other X-nuclei) chemical shift range. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Key parameters

Parameter	Description
Spectral Width (sw)	Set from previously acquired PROTON*
Acquisition time (at)	Set from "Pulse Sequence" panel, controls the resolution in F2, default 0.15s
F1 Nucleus (dn)	Pull- down menu to set F1 nucleus to ¹³ C, ¹⁵ N, or other*
C13 Spectral Width (ppm)	Type in desired chemical shift range for F1 dimension
Scans per t1 increment (nt)	Select typical choices from pull down menu*
t1 Increments (ni)	Select typical choices from pull down menu*- controls the resolution in F1 (minimum ~64)
One-Bond J1xh (j1xh)	Set value for the average $^1\mathrm{J}_{\mathrm{X},\mathrm{H}^-}$ 146 Hz works well for many carbons
Spinlock Duration (mixT)	Select from pull down menu- 80ms works best for large spin systems*
C12-H1 suppression	Check box to turn on/off on the "Pulse Sequence" panel- controls TANGO-Gradient ¹² C suppression, default is on (highly recommended)

NOTE

Specific values for these parameters may be typed manually in the appropriate boxes on the "Acquisition" or "Pulse Sequence" panels.

9 Hetero-TOCSY - (HC)HetToxys Processing

Processing

Automated processing is turned on by default, and the parameters are set to reasonable values, such that the resulting data after the acquisition usually require no further adjustment. The "Process" tab/"Basic" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (1k x 1k is the default), as well as a check box to turn on/off linear prediction and a pull-down to control the extent of linear prediction (default is 4*ni). Menus to quickly change the weighting functions in F2/F1 are also present (defaults are gaussians); the parameters for the weighting functions are calculated automatically from the acquisition time and number of increments. More processing details are found under some of the other "Process" panels, such as the "Default", "Weighting", and "More 2D" panels.

Tips, tricks, and next steps

- Spectral width (sw) setting transfers from a PROTON if the HSQCADTOXY is set up from this experiment. Setup from a TOCSY-type or HSQC-type experiment transfers TOCSY- or HSQC-related parameters, respectively. Receiver gain (gain) is usually set to a high value (?30), unless the sample is extremely concentrated or ¹³C-labelled.
- To measure ${}^{1}\text{H}{}^{-13}\text{C}$ (or ${}^{1}\text{H}{}^{-}\text{X}$) coupling constants, the carbon decoupling can be turned off by entering "nnn" in the Channel 2 "Dec On/Off" entry on the "Channels" panel or alternatively by typing dm='nnn' on the command line.
- The spinlock time (in addition to the magnitude of the coupling constants) ultimately controls how far along the spin system the correlations extend. Use spinlock durations exceeding 150ms with caution, as this can result in sample heating. The efficiency of the TOCSY transfer is directly proportional to the size of the coupling constants between the pairs of protons. To show primarily vicinal and geminal couplings, select a shorter spinlock time, for example, 30ms or less.
- The type of spinlock can be changed from mlev17 (for smaller molecules) to clean mlev17 (for larger molecules on the "Pulse Sequence" tab.

- The default number of steady state scans (ss) that are acquired before data acquisition to establish sample equilibrium is 32, which works for most samples. However, higher power carbon decoupling may cause some perturbations that may necessitate more ss scans to reach equilibrium. This value is changed on the "Acquisition" panel of the "Acquire" tab if necessary.
- The default parameters use a Grad-90-Grad steady state between scans, which helps cleanup un-relaxed magnetization. This can result in much cleaner spectra, especially when using shorter acquisition times (at) and relaxation delays (d1) (defaults are 0.15s and 1s, respectively).
- The HSQCADTOXY experiment, like all other heteronuclear TOCSYs, is an experiment with a lower sensitivity than the respective simple, single bond correlation experiment. This is because the magnetization generated during the initial HSQC stage is then distributed along the ¹H coupling network. Thus, a higher number of transients per increment are required unless the sample is very concentrated.
- In general, the HSQC-type experiments provide spectra with narrower peaks shapes (by suppressing $^{1}\text{H-}^{1}\text{H}$ homonuclear coupling modulation in F1) than the HMQC-types, typically leading to better S/N and resolution.
- The HSQCADTOXY experiment has a sensitivity advantage (factor of \sim 1.4) over the gHSQCADTOXY, but may produce potentially less clean spectra (due to t1 noise from strong signals such as t-butyl) than its gradient counterpart. The gradient enhanced version of these experiments can also suffer from additional sensitivity loss due to diffusion during the mixing time if the analyte is small and/or the solvent is non-viscous. Typically, consider using the non-gradient coherence selection version.
- The HSQCADTOXY uses adiabatic 180° carbon pulses and often gives better results than the HSQCTOXY, particularly when the carbon pulses are not perfectly calibrated for the given sample. In addition, the adiabatic 180° pulses provide a much more uniform inversion over a wide 13 C spectral width.

References:

E. Kupce, R. Freeman, J. Magn. Reson. Ser. A 117 (1995) 246-256. (Adiabatic Pulses)

9 Hetero-TOCSY - (HC)HetToxys

Tips, tricks, and next steps

K. E. Kover, O. Prakash, V, J. Hruby, J. Magn. Reson. A103 (1993) 92-96. (z-filtered HSQC-TOCSY)

Hetero-TOCSY - (HC)HetToxys 9 Tips, tricks, and next steps

gHSQCADTOXY

General description and usage

Description:

Two Dimensional heteronuclear single-quantum 1-bond J-correlation spectroscopy with a TOCSY spinlock, adiabatic 180^o X-nuclei pulses, and gradient coherence selection.

Usage:

The gHSQCADTOXY experiment is used to acquire a 2-dimensional spectrum to collect information correlating ${}^{1}\text{H}{}^{-1}\text{H}$ TOCSY and ${}^{13}\text{C}$ chemical shift information, for example, Proton A is in the same spin system as proton B at carbon chemical shift X. The experiment is useful to resolve overlapping spin systems in the ${}^{1}\text{H}{}^{-1}\text{H}$ TOCSY spectrum by spreading them out over the carbon (or other X-nuclei) chemical shift range. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Key parameters

Parameter	Description
Spectral Width (sw)	Set from previously acquired PROTON*
Acquisition time (at)	Set from "Pulse Sequence" panel, controls the resolution in F2, default 0.15s
F1 Nucleus (dn)	Pull- down menu to set F1 nucleus to ¹³ C, ¹⁵ N, or other*
C13 Spectral Width (ppm)	Type in desired chemical shift range for F1 dimension
Scans per t1 increment (nt)	Select typical choices from pull down menu*
t1 Increments (ni)	Select typical choices from pull down menu*- controls the resolution in F1 (minimum ~64)
One-Bond J1xh (j1xh)	Set value for the average $^1\mathrm{J}_{\mathrm{X},\mathrm{H}^-}$ 146 Hz works well for many carbons
Spinlock Duration (mixT)	Select from pull down menu- 80ms works best for large spin systems*
C12-H1 suppression	Check box to turn on/off on the "Pulse Sequence" panel- controls TANGO-Gradient ¹² C suppression, default is on (highly recommended)

NOTE

Specific values for these parameters may be typed manually in the appropriate boxes on the "Acquisition" or "Pulse Sequence" panels.

Defaults Acquisition	Experiment: gHSQCADTOXY Solvent: cdcl3	Observe: H1 H1-C13 Correlation
Pulse Sequence PRESAT WET Parameters Channels Flags Future Actions Overview	Acquisition Options F1 Nucleus C13 C13 Spectral Width (ppm) Scans per t1 Increment 11 Increments 128 One-Bond J1xh 146.0 Hz Spinlock Duration 80 ms Spinlock pattern: mlev17	Receiver Gain (dB): 30

9 Hetero-TOCSY - (HC)HetToxys Processing

Processing

Automated processing is turned on by default, and the parameters are set to reasonable values, such that the resulting data after the acquisition usually require no further adjustment. The "Process" tab/"Basic" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (1k x 1k is the default), as well as a check box to turn on/off linear prediction and a pull-down to control the extent of linear prediction (default is 4*ni). Menus to quickly change the weighting functions in F2/F1 are also present (defaults are gaussians); the parameters for the weighting functions are calculated automatically from the acquisition time and number of increments. More processing details are found under some of the other "Process" panels, such as the "Default", "Weighting", and "More 2D" panels.

Tips, tricks, and next steps

- Spectral width (sw) setting transfers from a PROTON if the gHSQCADTOXY is set up from this experiment. Setup from a TOCSY-type or HSQC-type experiment transfers TOCSY-or HSQC-related parameters, respectively. Receiver gain (gain) is usually set to a high value (\geq 30), unless the sample is extremely concentrated or ¹³C-labelled.
- To measure ${}^{1}\text{H}{}^{-13}\text{C}$ (or ${}^{1}\text{H}{}^{-}\text{X}$) coupling constants, the carbon decoupling can be turned off by entering "nnn" in the Channel 2 "Dec On/Off" entry on the "Channels" panel or alternatively by typing dm='nnn' on the command line.
- The spinlock time (in addition to the magnitude of the coupling constants) ultimately controls how far along the spin system the correlations extend. Use spinlock durations exceeding 150ms with caution, as this can result in sample heating. The efficiency of the TOCSY transfer is directly proportional to the size of the coupling constants between the pairs of protons. To show primarily vicinal and geminal couplings, select a shorter spinlock time, for example, 30ms or less.
- The type of spinlock can be changed from mlev17 (for smaller molecules) to clean mlev17 (for larger molecules on the "Pulse Sequence" tab.

- The default number of steady state scans (ss) that are acquired before data acquisition to establish sample equilibrium is 32, which works for most samples. However, higher power carbon decoupling may cause some perturbations that may necessitate more ss scans to reach equilibrium. This value is changed on the "Acquisition" panel of the "Acquire" tab if necessary.
- The default parameters use a Grad-90-Grad steady state between scans, which helps cleanup un-relaxed magnetization. This can result in much cleaner spectra, especially when using shorter acquisition times (at) and relaxation delays (d1) (defaults are 0.15s and 1s, respectively).
- The gHSQCADTOXY experiment, like all other heteronuclear TOCSYs, is an experiment with a lower sensitivity than the respective simple, single bond correlation experiment. This is because the magnetization generated during the initial HSQC stage is then distributed along the ¹H coupling network. Thus, a higher number of transients per increment are required unless the sample is very concentrated.
- In general, the HSQC-type experiments provide spectra with narrower peaks shapes (by suppressing ¹H- ¹H homonuclear coupling modulation in F1) than the HMQC-types, typically leading to better S/N and resolution.
- The HSQCADTOXY experiment has a sensitivity advantage (factor of ~1.4) over the gHSQCADTOXY, but may produce potentially less clean spectra (due to t1 noise from strong signals such as t-butyl) than its gradient counterpart. The gradient enhanced version of these experiments can also suffer from additional sensitivity loss due to diffusion during the mixing time if the analyte is small and/or the solvent is non-viscous. Typically, consider using the non-gradient coherence selection version.
- The gHSQCADTOXY uses adiabatic 180° carbon pulses and often gives better results than the gHSQCTOXY, particularly when the carbon pulses are not perfectly calibrated for the given sample. In addition, the adiabatic 180° pulses provide a much more uniform inversion over a wide 13 C spectral width.

References:

E. Kupce, R. Freeman, J. Magn. Reson. Ser. A 117 (1995) 246-256. (Adiabatic Pulses)

9 Hetero-TOCSY - (HC)HetToxys

Tips, tricks, and next steps

R. E. Hurd, J. Magn. Reson. 87 (1990) 422-428. (Gradient based Coherence Selection)

K. E. Kover, O. Prakash, V, J. Hruby, J. Magn. Reson. A103 (1993) 92-96. (z-filtered HSQC-TOCSY)

Hetero-TOCSY - (HC)HetToxys 9 Tips, tricks, and next steps

9 Hetero-TOCSY - (HC)HetToxys HSQCTOXY

HSQCTOXY

General description and usage

Description:

Two Dimensional heteronuclear single-quantum 1-bond J-correlation spectroscopy with a TOCSY spinlock and adiabatic 180^o X-nuclei pulses.

Usage:

The HSQCTOXY experiment is used to acquire a 2-dimensional spectrum to collect information correlating ¹H-¹H TOCSY and ¹³C chemical shift information, for example, Proton A is in the same spin system as proton B at carbon chemical shift X. The experiment is useful to resolve overlapping spin systems in the ¹H-¹H TOCSY spectrum by spreading them out over the carbon (or other X-nuclei) chemical shift range. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Key parameters

Parameter	Description
Spectral Width (sw)	Set from previously acquired PROTON*
Acquisition time (at)	Set from "Pulse Sequence" panel, controls the resolution in F2, default 0.15s
F1 Nucleus (dn)	Pull- down menu to set F1 nucleus to ¹³ C, ¹⁵ N, or other*
C13 Spectral Width (ppm)	Type in desired chemical shift range for F1 dimension
Scans per t1 increment (nt)	Select typical choices from pull down menu*
t1 Increments (ni)	Select typical choices from pull down menu*- controls the resolution in F1 (minimum ~64)
One-Bond J1xh (j1xh)	Set value for the average $^1\mathrm{J}_{\mathrm{X},\mathrm{H}^{-}}$ 146 Hz works well for many carbons
Spinlock Duration (mixT)	Select from pull down menu- 80ms works best for large spin systems*
Invert H1-C13 Direct Corr.?	Check box to invert direct proton-carbon correlation
C12-H1 suppression	Check box to turn on/off on the "Pulse Sequence" panel- controls TANGO-Gradient ¹² C suppression, default is on (highly recommended)

NOTE

Specific values for these parameters may be typed manually in the appropriate boxes on the "Acquisition" or "Pulse Sequence" panels.

9 Hetero-TOCSY - (HC)HetToxys

Processing

Processing

Automated processing is turned on by default, and the parameters are set to reasonable values, such that the resulting data after the acquisition usually require no further adjustment. The "Process" tab/"Basic" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (1k x 1k is the default), as well as a check box to turn on/off linear prediction and a pull-down to control the extent of linear prediction (default is 4*ni). Menus to quickly change the weighting functions in F2/F1 are also present (defaults are gaussians); the parameters for the weighting functions are calculated automatically from the acquisition time and number of increments. More processing details are found under some of the other "Process" panels, such as the "Default", "Weighting", and "More 2D" panels.

Tips, tricks, and next steps

• Spectral width (sw) setting transfers from a PROTON if the HSQCTOXY is set up from this experiment. Setup from a TOCSY-type or HSQC-type experiment transfers TOCSY- or HSQC-related parameters, respectively. Receiver gain (gain) is usually set to a high value (\geq 30), unless the sample is extremely concentrated or ¹³C-labelled.

- To measure ¹H-¹³C (or ¹H-X) coupling constants, the carbon decoupling can be turned off by entering "nnn" in the Channel 2 "Dec On/Off" entry on the "Channels" panel or alternatively by typing dm='nnn' on the command line.
- The spinlock time (in addition to the magnitude of the coupling constants) ultimately controls how far along the spin system the correlations extend. Use spinlock durations exceeding 150ms with caution, as this can result in sample heating. The efficiency of the TOCSY transfer is directly proportional to the size of the coupling constants between the pairs of protons. To show primarily vicinal and geminal couplings, select a shorter spinlock time, for example, 30ms or less.
- The type of spinlock can be changed from mlev17 (for smaller molecules) to clean mlev17 (for larger molecules on the "Pulse Sequence" tab.
- The default number of steady state scans (ss) that are acquired before data acquisition to establish sample equilibrium is 32, which works for most samples. However, higher power carbon decoupling may cause some perturbations that may necessitate more ss scans to reach equilibrium. This value is changed on the "Acquisition" panel of the "Acquire" tab if necessary.
- The default parameters use a Grad-90-Grad steady state between scans, which helps cleanup un-relaxed magnetization. This can result in much cleaner spectra, especially when using shorter acquisition times (at) and relaxation delays (d1) (defaults are 0.15s and 1s, respectively).
- On the "Pulse Sequence" tab there is a pull-down menu to select in-phase, inverted, or suppressed XH direct correlations. There is a minor sensitivity loss with this feature, however the extra information is obtained with no additional cost in experiment time. When direct correlations suppression is chosen the ¹³C decoupling can be turned off to place any residual direct correlations away from the true ¹H chemical shifts. This can allow the observation of ¹H-¹H J-connectivity between protons with very close overlap.
- The HSQCTOXY experiment, like all other heteronuclear TOCSYs, is an experiment with a lower sensitivity than the respective simple, single bond correlation experiment. This is because the magnetization generated during the initial HSQC stage is then distributed along the ¹H coupling network. Thus, a higher number of transients per increment are required unless the sample is very concentrated.

Tips, tricks, and next steps

- In general, the HSQC-type experiments provide spectra with narrower peaks shapes (by suppressing $^{1}\text{H-}^{1}\text{H}$ homonuclear coupling modulation in F1) than the HMQC-types, typically leading to better S/N and resolution.
- The HSQCTOXY experiment has a sensitivity advantage (factor of ~1.4) over the gHSQCTOXY, but may produce potentially less clean spectra (due to t1 noise from strong signals such as t-butyl) than its gradient counterpart. The gradient enhanced version of these experiments can also suffer from additional sensitivity loss due to diffusion during the mixing time if the analyte is small and/or the solvent is non-viscous. Typically, consider using the non-gradient coherence selection version.
- The HSQCADTOXY and gHSQCADTOXY use adiabatic 180° carbon pulses and often give better results than the HSQC, particularly when the carbon pulses are not perfectly calibrated for the given sample. In addition, the adiabatic 180° pulses provide a much more uniform inversion over a wide 13 C spectral width.

References:

E. Kupce, R. Freeman, J. Magn. Reson. Ser. A 117 (1995) 246-256. (Adiabatic Pulses)

K. E. Kover, O. Prakash, V, J. Hruby, J. Magn. Reson. A103 (1993) 92-96. (z-filtered HSQC-TOCSY)

R. D. Boyer, R. Johnson, K. Krishnamurthy, J. Magn. Reson. 165 (2003) 253-259 (Multiplicity Editing)

Hetero-TOCSY - (HC)HetToxys 9 Tips, tricks, and next steps

9 Hetero-TOCSY - (HC)HetToxys gHSQCTOXY

gHSQCTOXY

General description and usage

Description:

Two Dimensional heteronuclear single-quantum 1-bond J-correlation spectroscopy with a TOCSY spinlock, adiabatic 180° X-nuclei pulses, and gradient coherence selection.

Usage:

The gHSQCTOXY experiment is used to acquire a 2-dimensional spectrum to collect information correlating ${}^{1}\text{H}{}^{-1}\text{H}$ TOCSY and ${}^{13}\text{C}$ chemical shift information, for example, Proton A is in the same spin system as proton B at carbon chemical shift X. The experiment is useful to resolve overlapping spin systems in the ${}^{1}\text{H}{}^{-1}\text{H}$ TOCSY spectrum by spreading them out over the carbon (or other X-nuclei) chemical shift range. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Key parameters

Parameter	Description
Spectral Width (sw)	Set from previously acquired PROTON*
Acquisition time (at)	Set from "Pulse Sequence" panel, controls the resolution in F2, default 0.15s
F1 Nucleus (dn)	Pull- down menu to set F1 nucleus to 13 C, 15 N, or other*
C13 Spectral Width (ppm)	Type in desired chemical shift range for F1 dimension
Scans per t1 increment (nt)	Select typical choices from pull down menu*
t1 Increments (ni)	Select typical choices from pull down menu*- controls the resolution in F1 (minimum ~64)
One-Bond J1xh (j1xh)	Set value for the average $^1J_{X,H^-}$ 146 Hz works well for many carbons
Spinlock Duration (mixT)	Select from pull down menu- 80ms works best for large spin systems*
Invert H1-C13 Direct Corr.?	Check box to invert direct proton-carbon correlation
C12-H1 suppression	Check box to turn on/off on the "Pulse Sequence" panel- controls TANGO-Gradient ¹² C suppression, default is on (highly recommended)

NOTE

Specific values for these parameters may be typed manually in the appropriate boxes on the "Acquisition" or "Pulse Sequence" panels.

9 Hetero-TOCSY - (HC)HetToxys

Processing

Processing

Automated processing is turned on by default, and the parameters are set to reasonable values, such that the resulting data after the acquisition usually require no further adjustment. The "Process" tab/"Basic" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (1k x 1k is the default), as well as a check box to turn on/off linear prediction and a pull-down to control the extent of linear prediction (default is 4*ni). Menus to quickly change the weighting functions in F2/F1 are also present (defaults are gaussians); the parameters for the weighting functions are calculated automatically from the acquisition time and number of increments. More processing details are found under some of the other "Process" panels, such as the "Default", "Weighting", and "More 2D" panels.

Tips, tricks, and next steps

• Spectral width (sw) setting transfers from a PROTON if the gHSQCTOXY is set up from this experiment. Setup from a TOCSY-type or HSQC-type experiment transfers TOCSY- or HSQC-related parameters, respectively. Receiver gain (gain) is usually set to a high value (\geq 30), unless the sample is extremely concentrated or ¹³C-labelled.

- To measure ¹H-¹³C (or ¹H-X) coupling constants, the carbon decoupling can be turned off by entering "nnn" in the Channel 2 "Dec On/Off" entry on the "Channels" panel or alternatively by typing dm='nnn' on the command line.
- The spinlock time (in addition to the magnitude of the coupling constants) ultimately controls how far along the spin system the correlations extend. Use spinlock durations exceeding 150ms with caution, as this can result in sample heating. The efficiency of the TOCSY transfer is directly proportional to the size of the coupling constants between the pairs of protons. To show primarily vicinal and geminal couplings, select a shorter spinlock time, for example, 30ms or less.
- The type of spinlock can be changed from mlev17 (for smaller molecules) to clean mlev17 (for larger molecules on the "Pulse Sequence" tab.
- The default number of steady state scans (ss) that are acquired before data acquisition to establish sample equilibrium is 32, which works for most samples. However, higher power carbon decoupling may cause some perturbations that may necessitate more ss scans to reach equilibrium. This value is changed on the "Acquisition" panel of the "Acquire" tab if necessary.
- The default parameters use a Grad-90-Grad steady state between scans, which helps cleanup un-relaxed magnetization. This can result in much cleaner spectra, especially when using shorter acquisition times (at) and relaxation delays (d1) (defaults are 0.15s and 1s, respectively).
- On the "Pulse Sequence" tab there is a pull-down menu to select in-phase, inverted, or suppressed XH direct correlations. There is a minor sensitivity loss with this feature, however the extra information is obtained with no additional cost in experiment time. When direct correlations suppression is chosen the ¹³C decoupling can be turned off to place any residual direct correlations away from the true ¹H chemical shifts. This can allow the observation of ¹H-¹H J-connectivity between protons with very close overlap.
- The gHSQCTOXY experiment, like all other heteronuclear TOCSYs, is an experiment with a lower sensitivity than the respective simple, single bond correlation experiment. This is because the magnetization generated during the initial HSQC stage is then distributed along the ¹H coupling network. Thus, a higher number of transients per increment are required unless the sample is very concentrated.

Tips, tricks, and next steps

- In general, the HSQC-type experiments provide spectra with narrower peaks shapes (by suppressing $^{1}H-^{1}H$ homonuclear coupling modulation in F1) than the HMQC-types, typically leading to better S/N and resolution.
- The HSQCTOXY experiment has a sensitivity advantage (factor of ~1.4) over the gHSQCTOXY, but may produce potentially less clean spectra (due to t1 noise from strong signals such as t-butyl) than its gradient counterpart. The gradient enhanced version of these experiments can also suffer from additional sensitivity loss due to diffusion during the mixing time if the analyte is small and/or the solvent is non-viscous. Typically, consider using the non-gradient coherence selection version.
- The HSQCADTOXY and gHSQCADTOXY use adiabatic 180° carbon pulses and often give better results than the HSQC, particularly when the carbon pulses are not perfectly calibrated for the given sample. In addition, the adiabatic 180° pulses provide a much more uniform inversion over a wide $^{13}\mathrm{C}$ spectral width.

References:

E. Kupce, R. Freeman, J. Magn. Reson. Ser. A 117 (1995) 246-256. (Adiabatic Pulses)

K. E. Kover, O. Prakash, V, J. Hruby, J. Magn. Reson. A103 (1993) 92-96. (z-filtered HSQC-TOCSY)

R. D. Boyer, R. Johnson, K. Krishnamurthy, J. Magn. Reson. 165 (2003) 253-259 (Multiplicity Editing)

Hetero-TOCSY - (HC)HetToxys 9 Tips, tricks, and next steps

9 Hetero-TOCSY - (HC)HetToxys HMQCTOXY

нмостоху

General description and usage

Description:

Two Dimensional heteronuclear multiple-quantum 1-bond J-correlation spectroscopy with a TOCSY spinlock.

Usage:

The HMQCTOXY experiment is used to acquire a 2-dimensional spectrum to collect information correlating ¹H-¹H TOCSY and ¹³C chemical shift information, for example, Proton A is in the same spin system as proton B at carbon chemical shift X. The experiment is useful to resolve overlapping spin systems in the ¹H-¹H TOCSY spectrum by spreading them out over the carbon (or other X-nuclei) chemical shift range. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Key parameters

Parameter	Description
Spectral Width (sw)	Set from previously acquired PROTON*
Acquisition time (at)	Set from "Pulse Sequence" panel, controls the resolution in F2, default 0.15s
F1 Nucleus (dn)	Pull- down menu to set F1 nucleus to 13 C, 15 N, or other *
C13 Spectral Width (ppm)	Type in desired chemical shift range for F1 dimension
Scans per t1 increment (nt)	Select typical choices from pull down menu*
t1 Increments (ni)	Select typical choices from pull down menu*- controls the resolution in F1 (minimum ~64)
One-Bond J1xh (j1xh)	Set value for the average $^1\mathrm{J}_{\mathrm{X},\mathrm{H}^-}$ 146 Hz works well for many carbons
Spinlock Duration (mixT)	Select from pull down menu- 80ms works best for large spin systems*
Invert H1-C13 Direct Corr.?	Check box to invert direct proton-carbon correlation
C12-H1 suppression	Check box to turn on/off on the "Pulse Sequence" panel- controls TANGO-Gradient ¹² C suppression, default is on (highly recommended)

NOTE

Specific values for these parameters may be typed manually in the appropriate boxes on the "Acquisition" or "Pulse Sequence" panels.

9 Hetero-TOCSY - (HC)HetToxys

Processing

Processing

Automated processing is turned on by default, and the parameters are set to reasonable values, such that the resulting data after the acquisition usually require no further adjustment. The "Process" tab/"Basic" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (1k x 1k is the default), as well as a check box to turn on/off linear prediction and a pull-down to control the extent of linear prediction (default is 4*ni). Menus to quickly change the weighting functions in F2/F1 are also present (defaults are gaussians); the parameters for the weighting functions are calculated automatically from the acquisition time and number of increments. More processing details are found under some of the other "Process" panels, such as the "Default", "Weighting", and "More 2D" panels.

Tips, tricks, and next steps

• Spectral width (sw) setting transfers from a PROTON if the HMQCTOXY is set up from this experiment. Setup from a TOCSY-type or HMQC-type experiment transfers TOCSY-or HMQC-related parameters, respectively. Receiver gain (gain) is usually set to a high value (?30), unless the sample is extremely concentrated or ¹³C-labelled.

- To measure ${}^{1}\text{H}{}^{-13}\text{C}$ (or ${}^{1}\text{H}{}^{-X}$) coupling constants, the carbon decoupling can be turned off by entering "nnn" in the Channel 2 "Dec On/Off" entry on the "Channels" panel or alternatively by typing dm='nnn' on the command line.
- The spinlock time (in addition to the magnitude of the coupling constants) ultimately controls how far along the spin system the correlations extend. Use spinlock durations exceeding 150ms with caution, as this can result in sample heating. The efficiency of the TOCSY transfer is directly proportional to the size of the coupling constants between the pairs of protons. To show primarily vicinal and geminal couplings, select a shorter spinlock time, for example, 30ms or less.
- The type of spinlock can be changed from mlev17 (for smaller molecules) to clean mlev17 (for larger molecules on the "Pulse Sequence" tab.
- The default number of steady state scans (ss) that are acquired before data acquisition to establish sample equilibrium is 32, which works for most samples. However, higher power carbon decoupling may cause some perturbations that may necessitate more ss scans to reach equilibrium. This value is changed on the "Acquisition" panel of the "Acquire" tab if necessary.
- The default parameters use a Grad-90-Grad steady state between scans, which helps cleanup un-relaxed magnetization. This can result in much cleaner spectra, especially when using shorter acquisition times (at) and relaxation delays (d1) (defaults are 0.15s and 1s, respectively).
- On the "Pulse Sequence" tab there is a pull-down menu to select in-phase, inverted, or suppressed XH direct correlations. There is a minor sensitivity loss with this feature, however the extra information is obtained with no additional cost in experiment time. When direct correlations suppression is chosen the ¹³C decoupling can be turned off to place any residual direct correlations away from the true ¹H chemical shifts. This can allow the observation of ¹H-¹H J-connectivity between protons with very close overlap.
- The HMQCTOXY experiment, like all other heteronuclear TOCSYs, is an experiment with a lower sensitivity than the respective simple, single bond correlation experiment. This is because the magnetization generated during the initial HMQC stage is then distributed along the ¹H coupling network. Thus, a higher number of transients per increment are required unless the sample is very concentrated.

Tips, tricks, and next steps

- In general, the HSQC-type experiments provide spectra with narrower peaks shapes (by suppressing ¹H-¹H homonuclear coupling modulation in F1) than the HMQC-types, typically leading to better S/N and resolution.
- The HMQCTOXY experiment has a sensitivity advantage (factor of ~1.4) over the gHMQCTOXY, but may produce potentially less clean spectra (due to t1 noise from strong signals such as t-butyl) than its gradient counterpart. The gradient enhanced version of these experiments can also suffer from additional sensitivity loss due to diffusion during the mixing time if the analyte is small and/or the solvent is non-viscous. Typically, consider using the non-gradient coherence selection version.

References:

L. Lerner, A. Bax, J. Magn. Reson. 69 (1986) 375-380. (HMQC-TOCSY)

R. C. Crouch, T. D. Spitzer, G. E. Martin, Magn. Reson. Chem. 30 (1992) S71-S73. (Multiplicity Edited HMQC-TOCSY)
Hetero-TOCSY - (HC)HetToxys 9 Tips, tricks, and next steps

gHMQCTOXY

General description and usage

Description:

Two Dimensional heteronuclear multiple-quantum 1-bond J-correlation spectroscopy with a TOCSY spinlock and gradient coherence selection.

Usage:

The gHMQCTOXY experiment is used to acquire a 2-dimensional spectrum to collect information correlating ¹H-¹H TOCSY and ¹³C chemical shift information, for example, Proton A is in the same spin system as proton B at carbon chemical shift X. The experiment is useful to resolve overlapping spin systems in the ¹H-¹H TOCSY spectrum by spreading them out over the carbon (or other X-nuclei) chemical shift range. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Key parameters

Parameters	Description	
Spectral Width (sw)	Set from previously acquired PROTON*	
Acquisition time (at)	Set from "Pulse Sequence" panel, controls the resolution in F2, default 0.15s	
F1 Nucleus (dn)	Pull- down menu to set F1 nucleus to ¹³ C, ¹⁵ N, or other*	
C13 Spectral Width (ppm)	Type in desired chemical shift range for F1 dimension	
Scans per t1 increment (nt)	Select typical choices from pull down menu*	
t1 Increments (ni)	Select typical choices from pull down menu*- controls the resolution in F1 (minimum ~64)	
One-Bond J1xh (j1xh)	Set value for the average $^1\mathrm{J}_{\mathrm{X},\mathrm{H}^{-}}$ 146 Hz works well for many carbons	
Spinlock Duration (mixT)	Select from pull down menu- 80ms works best for large spin systems*	
Invert H1-C13 Direct Corr.?	Check box to invert direct proton-carbon correlation	
C12-H1 suppression	Check box to turn on/off on the "Pulse Sequence" panel- controls TANGO-Gradient ¹² C suppression, default is on (highly recommended)	

NOTE

Specific values for these parameters may be typed manually in the appropriate boxes on the "Acquisition" or "Pulse Sequence" panels.

9 Hetero-TOCSY - (HC)HetToxys

Processing

Processing

Automated processing is turned on by default, and the parameters are set to reasonable values, such that the resulting data after the acquisition usually require no further adjustment. The "Process" tab/"Basic" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (1k x 1k is the default), as well as a check box to turn on/off linear prediction and a pull-down to control the extent of linear prediction (default is 4*ni). Menus to quickly change the weighting functions in F2/F1 are also present (defaults are gaussians); the parameters for the weighting functions are calculated automatically from the acquisition time and number of increments. More processing details are found under some of the other "Process" panels, such as the "Default", "Weighting", and "More 2D" panels.

Tips, tricks, and next steps

• Spectral width (sw) setting transfers from a PROTON if the gHMQCTOXY is set up from this experiment. Setup from a TOCSY-type or HMQC-type experiment transfers TOCSY- or HMQC-related parameters, respectively. Receiver gain (gain) is usually set to a high value (?30), unless the sample is extremely concentrated or ¹³C-labelled.

- To measure ¹H-¹³C (or ¹H-X) coupling constants, the carbon decoupling can be turned off by entering "nnn" in the Channel 2 "Dec On/Off" entry on the "Channels" panel or alternatively by typing dm='nnn' on the command line.
- The spinlock time (in addition to the magnitude of the coupling constants) ultimately controls how far along the spin system the correlations extend. Use spinlock durations exceeding 150ms with caution, as this can result in sample heating. The efficiency of the TOCSY transfer is directly proportional to the size of the coupling constants between the pairs of protons. To show primarily vicinal and geminal couplings, select a shorter spinlock time, for example, 30ms or less.
- The type of spinlock can be changed from mlev17 (for smaller molecules) to clean mlev17 (for larger molecules on the "Pulse Sequence" tab.
- The default number of steady state scans (ss) that are acquired before data acquisition to establish sample equilibrium is 32, which works for most samples. However, higher power carbon decoupling may cause some perturbations that may necessitate more ss scans to reach equilibrium. This value is changed on the "Acquisition" panel of the "Acquire" tab if necessary.
- The default parameters use a Grad-90-Grad steady state between scans, which helps cleanup un-relaxed magnetization. This can result in much cleaner spectra, especially when using shorter acquisition times (at) and relaxation delays (d1) (defaults are 0.15s and 1s, respectively).
- On the "Pulse Sequence" tab there is a pull-down menu to select in-phase, inverted, or suppressed XH direct correlations. There is a minor sensitivity loss with this feature, however the extra information is obtained with no additional cost in experiment time. When direct correlations suppression is chosen the ¹³C decoupling can be turned off to place any residual direct correlations away from the true ¹H chemical shifts. This can allow the observation of ¹H-¹H J-connectivity between protons with very close overlap.
- The gHMQCTOXY experiment, like all other heteronuclear TOCSYs, is an experiment with a lower sensitivity than the respective simple, single bond correlation experiment. This is because the magnetization generated during the initial HSQC stage is then distributed along the ¹H coupling network. Thus, a higher number of transients per increment are required unless the sample is very concentrated.

Tips, tricks, and next steps

- In general, the HSQC-type experiments provide spectra with narrower peaks shapes (by suppressing $^{1}\text{H-}^{1}\text{H}$ homonuclear coupling modulation in F1) than the HMQC-types, typically leading to better S/N and resolution.
- The HMQCTOXY experiment has a sensitivity advantage (factor of ~1.4) over the gHMQCTOXY, but may produce potentially less clean spectra (due to t1 noise from strong signals such as t-butyl) than its gradient counterpart. The gradient enhanced version of these experiments can also suffer from additional sensitivity loss due to diffusion during the mixing time if the analyte is small and/or the solvent is non-viscous. Typically, consider using the non-gradient coherence selection version.

References:

L. Lerner, A. Bax, J. Magn. Reson. 69 (1986) 375-380. (HMQC-TOCSY)

R. E. Hurd, J. Magn. Reson. 87 (1990) 422-428. (Gradient based Coherence Selection)

R. C. Crouch, T. D. Spitzer, G. E. Martin, Magn. Reson. Chem. 30 (1992) S71-S73. (Multiplicity Edited HMQC-TOCSY)

Agilent VnmrJ 4 Experiment Guide

10 Carbon-carbon correlation - (CC)corr

(CC)corr Tab 370 INADEQUATE 372 INADEQUATEAD 376 ADEQUATEAD 380

10 Carbon-carbon correlation - (CC)corr (CC)corr Tab

(CC)corr Tab

This tab contains three experiments to map direct correlations from carbon to carbon. Two experiments are ¹³C-detected (INADEQUATE and INADEQUATEAD) and the third is ¹H-detected (ADEQUATEAD). To unambiguously elucidate the structure of small-molecules, the INADEQUATE and INADEQUATE(AD) experiments have no peer except perhaps X-ray crystallography. They are, however, highly insensitive and thus infrequently used.

A good rule of thumb to determine if the sample is concentrated enough for this class of experiment to be successful within a reasonable time (overnight acquisition) is that the S/N for the CARBON spectrum is ~25:1 after a single scan. The proton-detected ADEQUATEAD experiment is more sensitive. However it has the requirement that a proton must be nearby for the carbon to be detected. The "AD" experiments include adiabatic carbon 180° pulses and are highly recommended, as they provide more uniform inversion profiles for a wide ¹³C spectral width.

Experiment Selector	☆ ×
HF_Expts (HC)Crisis2	Hadamard
Sel2D Dosy 2	2D Dosy 3D
Jn(CH)corr (H)Sel1	LD (HC)HetToxys
Service (HH)Homo2D	JSpectra J1(CH)corr
Common Std 1D (0	CC)corr System Studies
INADEQUATE	INADEQUATEAD
ADEQUATEAD	

INADEQUATE

General description and usage

Description:

Two Dimensional homonuclear multiple-quantum J-correlation spectroscopy.

Usage:

The INADEQUATE experiment shows correlations between carbons that are directly coupled to one another. The data have great utility for structure elucidation as the carbon connectivities are established directly from the correlations. These connectivities can then be used to map the molecular framework, similar to x-ray crystallography. The drawback to the experiment is that as the sensitivity is very low; it should only be attempted with samples of higher concentrations. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Key parameters

Parameter	Description	
C13 Spectral Width (sw)	Type in desired values in ppm	
Acquisition time (at)	Set from "Pulse Sequence" panel, controls the resolution in F2, default 0.064s	
Scans per t1 increment (nt)	Select typical choices from pull down menu*	
t1 Increments (ni)	Select typical choices from pull down menu*- controls the resolution in F1	
One-Bond C-C coupling Jcc (jcc)	Type in value for the average J ¹ _{C-C} - 55 Hz works well for most molecules	
Steady State (ss)	Set from "Pulse Sequence" panel, turn on/off gradient cleanup between scans	

NOTE

You can type specific values for these parameters manually in the appropriate boxes on the "Acquisition" panel.

Start Acquire F	rocess Show Time Acquire Sto	p Sequence A	Arrays Seq. H	lelp
Defaults Acquisition Pulse Sequence PRESAT WET Channels Flags Future Actions Overview	Experiment: INADEQUATE Solver Acquisition Options C13 Spectral Width (ppm) -17.5 Scans per t1 Increment 256 t1 Increments 64 One-Bond C-C coupling Jcc 55	it: cdcl3 Obs	serve: C13 C: Receiver C	13-H1 Correlation iain (dB): 30

10 Carbon-carbon correlation - (CC)corr Processing

Processing

Automated processing is turned on by default, and the parameters are set to reasonable values, such that the resulting data after the acquisition usually require no further adjustment. The "Process" tab/"Basic" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size ($2k \times 2k$ is the default), as well as a check box to turn on/off linear prediction and a pull-down to control the extent of linear prediction (default is 2*ni). Menus to quickly change the weighting functions in F2/F1 are also present (defaults are gaussians); the parameters for the weighting functions are calculated automatically from the acquisition time and number of increments. More processing details are found under some of the other "Process" panels, such as the "Default", "Weighting", and "More 2D" panels.

Tips, tricks, and next steps

- Spectral width (sw) setting transfers from a CARBON if the INADEQUATE is set up from this experiment. Receiver gain (gain) is usually set to a high value (≥30).
- Spectral width in the F1 dimension (sw1) is set, by default, to sw*2. However, a value of sw1=sw (while generating aliased peaks along F1) can be used with no ambiguities in connectivity interpretations.
- The default number of steady state scans (ss) that are acquired before data acquisition to establish sample equilibrium is 32, which works for most samples. This value is changed on the "Acquisition" panel of the "Acquire" tab if necessary.
- The default parameters use a Grad-90-Grad steady state between scans, which helps cleanup un-relaxed magnetization. This can result in much cleaner spectra, especially when using shorter acquisition times (at) and relaxation delays (d1) (defaults are 0.15s and 1s, respectively).
- Observing quaternary carbons is uniquely challenging. Use of some relaxation agent may be helpful while running the INADEQUATE experiment.
- A good rule of thumb to determine if the sample is concentrated enough for an INADEQUATE experiment is that the S/N for the CARBON spectrum is \sim 25:1 after a single scan.

• The INADEQUATEAD uses adiabatic 180° carbon pulses and often gives better results than the INADEQUATE, particularly when the carbon pulses are not perfectly calibrated for the given sample. In addition, the adiabatic 180° pulses provide a much more uniform inversion over a wide 13 C spectral width.

References:

A. Bax, R. Freeman, S. P. Kempsell, J. Am. Chem. Soc. 102 (1980) 4849-4851 (INADEQUATE)

J. Buddrus, J. Lambert, Magn. Reson. Chem. 40 (2002) 3-23. (INADEQUATE – Recent Developments)

A. D. Bain D. W. Hughes, C. K. Anand, Z. Nie, V. J. Robertson, Magn. Reson. Chem. 48 (2010) 630-641 (INADEQUATE – Practical Aspects)

INADEQUATEAD

General description and usage

Description:

Two Dimensional homonuclear multiple-quantum J-correlation spectroscopy with adiabatic 180° X-nuclei pulses.

Usage:

The INADEQUATE experiment shows correlations between carbons that are directly coupled to one another. The data have great utility for structure elucidation, as the carbon connectivities are established directly from the correlations. These connectivities can then be used to map the molecular framework, similar to x-ray crystallography. The drawback to the experiment is that as the sensitivity is very low; it should only be attempted with samples of higher concentrations. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Key parameters

Parameter	Description	
C13 Spectral Width (sw)	Type in desired values in ppm	
Acquisition time (at)	Set from "Pulse Sequence" panel, controls the resolution in F2, default 0.064s	
Scans per t1 increment (nt)	Select typical choices from pull down menu*	
t1 Increments (ni)	Select typical choices from pull down menu*- controls the resolution in F1	
One-Bond C-C coupling Jcc (jcc)	Type in value for the average J ¹ _{C-C} - 55 Hz works well for most molecules	
Steady State (ss)	Set from "Pulse Sequence" panel, turn on/off gradient cleanup between scans	

NOTE

Specific values for these parameters may be typed manually in the appropriate boxes on the "Acquisition" panel.

Defaults	Experiment: INADEQUATEAD Solvent: cdcl3 Observe: C13 C13-H1 Correlation	
Acquisition Pulse Sequence PRESAT MET Channels Flags -uture Actions Overview	Acquisition Options C13 Spectral Width (ppm) -17.5 to 238 Scans per t1 Increment 256 t1 Increments 64 One-Bond C-C coupling Jcc 55.0 Hz	

10 Carbon-carbon correlation - (CC)corr Processing

Processing

Automated processing is turned on by default, and the parameters are set to reasonable values, such that the resulting data after the acquisition usually require no further adjustment. The "Process" tab/"Basic" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (2k x 2k is the default), as well as a check box to turn on/off linear prediction and a pull-down to control the extent of linear prediction (default is 2*ni). Menus to quickly change the weighting functions in F2/F1 are also present (defaults are gaussians); the parameters for the weighting functions are calculated automatically from the acquisition time and number of increments. More processing details are found under some of the other "Process" panels, such as the "Default", "Weighting", and "More 2D" panels.

Tips, tricks, and next steps

- Spectral width (sw) setting transfers from a CARBON if the INADEQUATEAD is set up from this experiment. Receiver gain (gain) is usually set to a high value (≥30).
- Spectral width in the F1 dimension (sw1) is set, by default, to sw*2. However, a value of sw1=sw (while generating aliased peaks along F1) can be used with no ambiguities in connectivity interpretations.
- The default number of steady state scans (ss) that are acquired before data acquisition to establish sample equilibrium is 32, which works for most samples. This value is changed on the "Acquisition" panel of the "Acquire" tab if necessary.
- The default parameters use a Grad-90-Grad steady state between scans, which helps cleanup un-relaxed magnetization. This can result in much cleaner spectra, especially when using shorter acquisition times (at) and relaxation delays (d1) (defaults are 0.15s and 1s, respectively).
- Observing quaternary carbons is uniquely challenging. Use of some relaxation agent may be helpful while running the INADEQUATEAD experiment.

- A good rule of thumb to determine if the sample is concentrated enough for an INADEQUATEAD experiment to be successful within a reasonable time (overnight acquisition) is that the S/N for the CARBON spectrum is ~25:1 after a single scan.
- The INADEQUATEAD uses adiabatic 180° carbon pulses and often gives better results than the INADEQUATE, particularly when the carbon pulses are not perfectly calibrated for the given sample. In addition, the adiabatic 180° pulses provide a much more uniform inversion over a wide 13 C spectral width.

References:

A. Bax, R. Freeman, S. P. Kempsell, J. Am. Chem. Soc. 102 (1980) 4849-4851 (INADEQUATE)

L. Jin, D. Uhrin, Magn. Reson. Chem. 45 (2007) 628-633 (IPAP INADEQUATE with Adiabatic Pulses)

D. Uhrin, Ann. Rep. NMR. Spectrosc. 70 (2010) 1-34 (INADEQUATE – Review)

ADEQUATEAD

General description and usage

Description:

Two Dimensional heteronuclear single or double-quantum J-correlation spectroscopy with adiabatic 180° X-nuclei pulses.

Usage:

The ADEQUATEAD experiment can be acquired either as a single quantum experiment or a double quantum experiment. The single quantum experiment selectively transfers coherences from two adjacent carbons to protons directly attached to one of the carbons. The double quantum experiment can connect carbons that are separated by multiple bonds. The data have great utility for structure elucidation, as the carbon connectivities established indirectly from the correlations can then be used to map the molecular framework. The experiment is more sensitive (theoretically a factor of 32) than the INADEQUATEAD. However, the ADEQUATEAD experiment relies on at least one nearby attached proton,

so correlations between quaternary carbons are not observed. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Key parameters

Parameter	Description	
Spectral Width (sw)	Set from previously acquired PROTON*	
Acquisition time (at)	Set from "Pulse Sequence" panel, controls the resolution in F2, default 0.15s	
F1 Nucleus (dn)	Pull- down menu to set F1 nucleus to ¹³ C, ¹⁵ N, or other*	
C13 Spectral Width (ppm)	Type in desired chemical shift range for F1 dimension	
Scans per t1 increment (nt)	Select typical choices from pull down menu*	
t1 Increments (ni)	Select typical choices from pull down menu*- controls the resolution in F1 (minimum ~64)	
One-Bond J1xh (j1xh)	Type in value for the average $^1\mathrm{J}_{\mathrm{X},\mathrm{H}^{-}}$ 146 Hz works well for most molecules	
C-C evolution	Set to single quantum (SQ) or double quantum (DQ)	
Steady State (ss)	Set from "Pulse Sequence" panel, turn on/off gradient cleanup between scans	

NOTE

Specific values for these parameters may be typed manually in the appropriate boxes on the "Acquisition" or "Pulse Sequence" panels.

10 Carbon-carbon correlation - (CC)corr

Processing

Processing

Automated processing is turned on by default, and the parameters are set to reasonable values, such that the resulting data after the acquisition usually require no further adjustment. The "Process" tab/"Basic" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (1k x 1k is the default), as well as a check box to turn on/off linear prediction and a pull-down to control the extent of linear prediction (default is 4*ni). Menus to quickly change the weighting functions in F2/F1 are also present (defaults are gaussians); the parameters for the weighting functions are calculated automatically from the acquisition time and number of increments. More processing details are found under some of the other "Process" panels, such as the "Default", "Weighting", and "More 2D" panels.

Tips, tricks, and next steps

• Spectral width (sw) setting transfers from a PROTON if the ADEQUATEAD is set up from this experiment. Receiver gain (gain) is usually set to a high value (≥30).

- The default number of steady state scans (ss) that are acquired before data acquisition to establish sample equilibrium is 32, which works for most samples. This value is changed on the "Acquisition" panel of the "Acquire" tab if necessary.
- The default parameters use a Grad-90-Grad steady state between scans, which helps cleanup un-relaxed magnetization. This can result in much cleaner spectra, especially when using shorter acquisition times (at) and relaxation delays (d1) (defaults are 0.15s and 1s, respectively).

References:

B. Reif, M. Kock, R. Kerssebaum, H. Kang, W. Fenical, C. Griesinger, J. Magn. Reson. A118 (1996) 282-285 (ADEQUATE)

M. Kock, R. Kerssebaum, W. Bermel, Magn. Reson. Chem. 41 (2003) 65-69. (ADEQUATE with Adiabatic Pulses)

T. Parella, F. S. Ferrando, J. Magn. Reson, 166 (2004) 123-128. (ADEQUATE with Multiplicity Editing)

10 Carbon-carbon correlation - (CC)corr

Tips, tricks, and next steps

Agilent VnmrJ 4 Experiment Guide

11 Proton-fluorine - HF_Expts

HF_Expts Tab 386 FH_gHETCOR 388 FH_HOESY 392 FObs_HDec 396 HObs_FDec 400

11 Proton-fluorine - HF_Expts

HF_Expts Tab

HF_Expts Tab

This tab of the experiment selector includes both 1D and 2D experiments involving ¹H and¹⁹F. All the experiments are designed such that the data are acquired without the need for a second high-band channel in the spectrometer. The 1D experiments are with fluorine observe, proton decouple (FObs_HDec), and *vice versa* (HObs_FDec). The 2D experiments available include both J-coupling (FH_gHETCOR) and through-space (FH_HOESY) correlation experiments.

These experiments can provide a unique handle for structure elucidation and peak assignment of fluorinated compounds. When acquiring impure samples of fluorinated compounds from a biological origin, these experiments can be used to see resonances from the molecule of interest, while excluding background signals. These experiments require a probe that can be simultaneously tuned to H and F and has the appropriate H-F calibrations in the probe file. There are unique calibration routines in the channel sharing mode. See to the VnmrJ Installation and Administration manual, Chapter 9, for information on calibration.

Experiment Selector	
HF_Expts (HC)Crisis2 H	Hadamard
Sel2D Dosy 2	D Dosy 3D
Jn(CH)corr (H)Sel1	.D (HC)HetToxys
Service (HH)Homo2D	JSpectra J1(CH)corr
Common Std 1D (C	C)corr System Studies
FH_gHETCOR	FH_HOESY
FObs_HDec	HObs_FDec

11 Proton-fluorine - HF_Expts FH_gHETCOR

FH_gHETCOR

General description and usage

Description:

Two Dimensional heteronuclear ${}^{1}\text{H}{}^{-19}\text{F}$ shift correlation with fluorine observe and gradient coherence selection.

Usage:

The FH_gHETCOR experiment is used to acquire a 2-dimensional spectrum to correlate protons coupled to fluorines with fluorine detection, meaning the F1 dimension is ¹H and the F2 dimension is ¹⁹F. This scheme allows for higher resolution in the fluorine dimension as the chemical shift range is much larger. This experiment is useful to confirm the attachment location(s) for fluorine atom(s) in a molecule. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Key parameters

Parameters	Description	
Spectral Width (sw)	Set from previously acquired FLUORINE or Fobs_HDec*	
Acquisition time (at)	Set from "Pulse Sequence" panel, controls the resolution in F2, default 0.019 s	
H1 Spectral Width [ppm] [F1]	Select typical choices from pull down menu or type in values	
Scans per t1 increment (nt)	Select typical choices from pull down menu*	
t1 Increments (ni)	Select typical choices from pull down menu* - controls the resolution in F1	
F-H Coupling Constant (jFH)	Set value for the average ⁿ J _{F,H}	
Steady State (ss)	Set from "Pulse Sequence" panel, turn on/off gradient cleanup between scans	

NOTE

Specific values for these parameters may be typed manually in the appropriate boxes on the "Acquisition" or "Pulse Sequence" panels.

Defaults Acquisition	Experiment: FH_gHETCOR Solvent: cdcl3	Observe: F19 F19-H1 Correlation
Pulse Sequenc Channels Flags Future Actions	Acquisition Options H1 Spectral Width (ppm) [F1] 10 → 0 ▼ (or enter): 10 0 ppm Scans per t1 increment 2 ▼ t1 increments 128 ▼ F-H Coupling constant 15 Hz ▼	Receiver Gain (d8): 30

11 Proton-fluorine - HF_Expts Processing

Processing

Automated processing is turned on by default, and the parameters are set to reasonable values, such that the resulting data after the acquisition usually require no further adjustment. The "Process" tab/"Basic" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (2k x 1k is the default), as well as a check box to turn on/off linear prediction and a pull-down to control the extent of linear prediction (default is 4*ni). Menus to quickly change the weighting functions in F2/F1 are also present (defaults are gaussians); the parameters for the weighting functions are calculated automatically from the acquisition time and number of increments. More processing details are found under some of the other "Process" panels, such as the "Default", "Weighting", and "More 2D" panels.

Tips, tricks, and next steps

- Note: this experiment requires a probe that can be simultaneously tuned to H and F and has the appropriate H-F calibrations in the probe file.
- Spectral width (sw) and receiver gain (gain) settings transfer from a FLUORINE or FObs_HDec data set if the FH_gHETCOR is set up from these experiments. As ¹⁹F has a large chemical shift range, it is highly recommended that the sw is optimized before acquiring this experiment. Using the Fobs_HDec experiment for setup preserves the decoupling parameters. However, decoupling may result in sensitivity losses and unintended signal cancellations. Decoupling can be turned off by setting the parameter dm to the value "nnn".
- The default number of steady state scans (ss) that are acquired before data acquisition to establish sample equilibrium is 32, which works for most samples. This value is changed on the "Acquisition" panel of the "Acquire" tab if necessary.
- The default parameters use a Grad-90-Grad steady state between scans, which helps cleanup un-relaxed magnetization. The default setting for this parameter is off.

References:

J. Battiste, R. A. Newmark, Prog. NMR. Spectrosc. 48 (2006) 1-23. (Multidimensional $^{19}{\rm F}$ NMR)

11 Proton-fluorine - HF_Expts FH_HOESY

FH_HOESY

General description and usage

Description:

Two Dimensional heteronucler ¹H-¹⁹F through-space correlation spectroscopy with fluorine observe.

Usage:

The FH_HOESY experiment produces a 2-dimensional spectrum with crosspeaks between fluorines and protons that are close in space (typically <5 Å). The experiment is configured with fluorine detection, meaning the F1 dimension is ¹H and the F2 dimension is ¹⁹F. This scheme allows for higher resolution in the fluorine dimension as the chemical shift range is much larger. The FH_HOESY experiment if often used to help determine stereochemistry for rigid ring systems or to confirm attachment locations for fluorines on unsaturated carbons (for example, aromatic) of a molecule. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Key parameters

Parameter	Description
Spectral Width (sw)	Set from previously acquired FLUORINE or Fobs_HDec*
Acquisition time (at)	Set from "Pulse Sequence" panel, controls the resolution in F2, default 0.019 s
Scans per increment (nt)	Select typical choices from pull down menu*
Number of increments (ni)	Select typical choices from pull down menu*- controls the resolution in F1 (minimum ~64)
H1 Spectral Width [ppm] [F1]	Select typical choices from pull down menu or type in values
HOESY mixing time (mix)	Select from pull down menu*
Make coherence selection with gradient	Check box to turn gradient coherence selection on/off
Steady State (ss)	Set from "Pulse Sequence" panel, turn on/off gradient cleanup between scans
Relaxation time (d1)	Set from "Acquisition" panel controls the delay between scans

NOTE

Specific values for these parameters may be typed manually in the appropriate boxes on the "Acquisition" or "Pulse Sequence" panels.

11 Proton-fluorine - HF_Expts Processing

Processing

Automated processing is turned on by default, and the parameters are set to reasonable values, such that the resulting data after the acquisition usually require no further adjustment, except for minor manual phasing changes that may be required, as the NOE peaks are negative for smaller molecules. The "Process" tab/"Basic" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (2k x 1k is the default), as well as a check box to turn on/off linear prediction and a pull-down to control the extent of linear prediction (default is 2*ni). Menus to quickly change the weighting functions in F2/F1 are also present (defaults are gaussians); the parameters for the weighting functions are calculated automatically from the acquisition time and number of increments. More processing details are found under some of the other "Process" panels, such as the "Default", "Weighting", and "More 2D" panels.

Tips, tricks, and next steps

- Note: this experiment requires a probe that can be simultaneously tuned to H and F and has the appropriate H-F calibrations in the probe file.
- Spectral width (sw) and receiver gain (gain) settings transfer from a FLUORINE or FObs_HDec data set if the FH_gHETCOR is set up from these experiments. As ¹⁹F has a large chemical shift range, it is highly recommended that the sw is optimized before acquiring this experiment. Using the Fobs_HDec experiment for setup preserves the decoupling parameters. However, decoupling may result in sensitivity losses. Decoupling can be turned off by setting the parameter dm to the value "nnn".
- The default number of "steady state" or "dummy scans" that are acquired before data acquisition to establish sample equilibrium is 32, which works for most samples. This value is changed on the "Acquisition" panel of the "Acquire" tab if necessary.
- The default parameters use a Grad-90-Grad steady state between scans, which helps cleanup un-relaxed magnetization. This can result in much cleaner spectra, especially when using shorter acquisition times and d1 relaxation delays (defaults are 0.15s and 1s, respectively).

References:

J. Battiste, R. A. Newmark, Prog. NMR. Spectrosc. 48 (2006) 1-23. (Multidimensional $^{19}{\rm F}$ NMR)

W. Bauer, Magn. Reson. Chem. 34 (1996) 532-537. (Gradient Inverse HOESY)

11 Proton-fluorine - HF_Expts FObs HDec

FObs_HDec

General description and usage

Description:

Uses the standard s2pul pulse sequence to acquire a 1D- $^{19}\mathrm{F}$ dataset with proton decoupling.

Usage:

The FObs_HDec experiment is typically used to confirm the presence of fluorine in a molecule. The large fluorine chemical shift range is highly sensitive to nearby functional groups. The experiment is nearly as sensitive as a 1D PROTON experiment, and the decoupling increases the sensitivity by collapsing the ¹⁹F peaks into singlets. All parameters are set from the "Acquire" tab/"Default F19" panel unless otherwise specified.

Key parameters

Parameter	Description	
Solvent (solvent)	Set from the "Start" tab/"Standard" panel	
Spectral Width (sw)	Type in specific ppm values	
Number of scans (nt)	Select typical choices from pull down menu*	
Relaxation Delay (d1)	Select typical choices from pull down menu*-controls the delay between scans	
Pulse Angle	Select typical choices from pull down menu*-controls the tip angle for the pulse	
H1 Decoupler offset (dof)	Type in value for the center of the proton chemical shift range to optimize decoupling	
Acquisition time (at)	Set from "Pulse Sequence" panel, controls the digital resolution (Hz/point, 1/at)	

NOTE

Specific values for these parameters may be typed manually in the appropriate boxes on the "Acquisition" panel.

Defaults	Experiment: FHdec Solvent: cdcl3	Observe: F19 Decoupler: H1
Pulse Sequence Channels Flags Future Actions	Acquisition Options Spectral width - from -200.6 to 30.6 ppm Number of scans 16 • Relaxation Delay 1 • s Pulse Angle 30 • degrees H1 Decoupler offset 4.00 ppm	Receiver Gain (dB) 30

11 Proton-fluorine - HF_Expts

Processing

Processing

A typical processing apodization choice which provides S/N enhancement (at the expense of resolution) for a 1D spectrum is line broadening, with an lb setting from ~0.5-1 Hz. A suggested optimal value is an lb equal to the peak linewidth at half-height. Other types of apodization are available under the "Process" tab on the "Weighting" panel. Suggested choices for resolution enhancement (at the expense of S/N) are "pseudo echo" and "res-enhance." When the weighting function is selected, values for these parameters are calculated based on the acquisition time. They may also be set manually with the "Interactive Weighting" button.

CAUTION

Resolution enhancing functions affect the spectral integration- do not use these types of apodization for quantification.

Many NMR probes contain fluorinated materials, which cause broad signals that can distort the baseline (especially when lying next to or outside the spectral window). The default processing parameters are set to use linear prediction to back predict the first seven points of the spectrum in order to flatten the baseline. These settings may be modified under the "Process" tab on the "More 1D" panel.

Tips, tricks, and next steps

- Note: this experiment requires a probe that can be simultaneously tuned to H and F and has the appropriate H-F calibrations in the probe file.
- This fluorine experiment produces a proton-decoupled ¹⁹F spectrum. See the FLUORINE experiment (Chapter 2) for a proton-decoupled version of the experiment, or set the parameter dm to the value 'nnn'. Parameters to optimize the decoupling are found on the "Pulse Sequence" tab. However, as the proton chemical shift range is quite small, the default parameters should usually work well (default shape covers an 8000 Hz range).
- To further optimize the spectral width (sw), place one cursor on each side of the desired region on the spectrum, click the **boxes** button located under the spectrum window and reacquire the data. The default range is set to cover the typical range of fluorine chemical shifts seen in organic molecules. As this range is very large, once the fluorine signals are located, consider narrowing the chemical shift range and reacquiring the spectrum for better resolution.
- The acquisition time, which controls the digital resolution (Hz/point, which is equal to 1/at), is set on the "Acquisition" page of the "Acquire" tab. Because FLUORINE spectra are often acquired with large spectral widths, the default digital resolution (set from the chosen spectral width) may be insufficient to see small couplings; consider lengthening the acquisition time and/or narrowing the spectral width.
- It must be noted that the total interscan delay is the sum of the acquisition time (at) and the relaxation delay (d1). When acquiring a multi-scan FObs_HDec experiment for quantification, set the interscan delay to at least 5X the longest fluorine T1 value in the molecule.
- When acquiring impure samples of fluorinated compounds from a biological origin, consider using fluorine spectra in lieu of a more complicated proton spectrum as appropriate.

11 Proton-fluorine - HF_Expts HObs FDec

HObs_FDec

General description and usage

Description:

Uses the standard s2pul pulse sequence to acquire a 1D- 1 H dataset with 19 F decoupling.

Usage:

The HObs_FDec experiment can be used to simplify proton spectra with complicated fluorine coupling and to establish which protons are coupled to fluorine. All parameters are set from the "Acquire" tab/"Default F19" panel unless otherwise specified.

Parameter Description		
Solvent (solvent)	Set from the "Start" tab/"Standard" panel	
Spectral Width (sw)	Type in specific ppm values	
Number of scans (nt)	Select typical choices from pull down menu*	
Relaxation Delay (d1)	Select typical choices from pull down menu*-controls the delay between scans	
Pulse Angle	Select typical choices from pull down menu*-controls the tip angle for the pulse	
F19 Decoupler offset (dof)	Type in value for the center of the fluorine chemical shift range to optimize decoupling	
Acquisition time (at)	Set from "Pulse Sequence" panel, controls the digital resolution (Hz/point, 1/at)	

NOTE

Defaults	Experiment: FHdec Se	olvent: cdcl3	Ot	bserve: H1	Decoupler: F19
Pulse Sequence Channels Flags Future Actions	Acquisition Options Spectral width – from Number of scans Relaxation Delay Pulse Angle F19 Decoupler offset	-2.0 to 14.0 8 ▼ 1 ▼ 90 ▼ degrees -61.50 ppm	ppm	Receiver	r Gain (dB) <mark>30</mark> Ir Autogain

11 Proton-fluorine - HF_Expts

Processing

Processing

A typical processing apodization choice which provides S/N enhancement (at the expense of resolution) for a 1D spectrum is line broadening, with an lb setting from ~0.5-1 Hz. A suggested optimal value is an lb equal to the peak linewidth at half-height. Other types of apodization are available under the "Process" tab on the "Weighting" panel. Suggested choices for resolution enhancement (at the expense of S/N) are "pseudo echo" and "res-enhance." When the weighting function is selected, values for these parameters are calculated based on the acquisition time. They may also be set manually with the "Interactive Weighting" button.

CAUTION

Resolution enhancing functions affect the spectral integration- do not use these types of apodization for quantification.

Tips, tricks, and next steps

- Note: this experiment requires a probe that can be simultaneously tuned to H and F and has the appropriate H-F calibrations in the probe file.
- The HObs_FDec experiment produces a fluorine-decoupled ¹H spectrum. See the PROTON experiment (Chapter 2) for a proton-decoupled version of the experiment, or set the parameter dm to the value 'nnn'. Parameters to optimize the decoupling are found on the "Pulse Sequence" tab. As the fluorine chemical shift range is quite large, it is important to locate the chemical shift(s) of the fluorine(s) for decoupling and set the decoupler offset properly. If there are multiple fluorines in the molecule with large chemical shift differences, consider decoupling a single fluorine at a time. Alternatively, an adiabatic decoupling shape may be created. See the VnmrJ manual for instructions on using Pbox.

- To further optimize the spectral width (sw), place one cursor on each side of the desired region on the spectrum, click the **NOVEW** button located under the spectrum window and reacquire the data. The default range is set to cover the typical range of fluorine chemical shifts seen in organic molecules. As this range is very large, once the fluorine signals are located, consider narrowing the chemical shift range and reacquiring the spectrum for better resolution.
- ¹⁹F shaped decoupling (due to large chemical shift range of ¹⁹F) typically necessitates higher powers to be used. However decoupling powers above 46 dB are not allowed in the shared mode (thus providing an instrument safety margin). Using the default parameters, the sensitivity of these decoupled experiments is approximately 60% that of the non-decoupled experiment. In case you want to change the decoupling bandwidths (for wider ¹⁹F decoupling width) and/or duty cycle (to gain sensitivity and/or lower decoupling power) the decoupling shape must be recreated via the Pulse sequence panel.

11 Proton-fluorine - HF_Expts

Tips, tricks, and next steps

Agilent VnmrJ 4 Experiment Guide

12 JSpectra

JSpectra Tab 406 HETER02DJ 408 HOM02DJ 412

12 JSpectra JSpectra Tab

JSpectra Tab

This tab of the experiment selector includes two experiments that provide information regarding coupling constants (J's) in the F1 dimension. The HOMO2DJ experiment has proton chemical shifts in F2 and proton coupling constants in F1, while HETERO2DJ version has carbon chemical shifts in F2 and proton coupling constants in F1. As HETERO2DJ is carbon-detected, it is a very low sensitivity experiment. These experiments are usually used to resolve complex, overlapping multiplets. The HOMO2DJ is also used to help resolve complicated, multi-component samples, such as from a biological matrix. In addition, with appropriate post-acquisition processing, the F2 projection in HOMO2DJ can be interpreted as a broadband homonuclear decoupled 1 H spectrum.

Experiment Se	elector			å ×
HF_Expts ((HC)Crisis2	Hadam	ard	
Sel2D	Do	sy 2D	Dosy 3D	
Jn(CH)corr	(H)	Sel1D	(HC)HetToxy	s
Service ((HH)Homo2	2D JSp	ectra J1(CH)o	orr
Common	Std 1D	(CC)corr	System Stud	ies
HETE	RO2DJ		HOMO2DJ	

HETERO2DJ

General description and usage

Description:

Two Dimensional heteronuclear J-resolved spectroscopy.

Usage:

The HETERO2DJ experiment is used to acquire a 2-dimensional spectrum with the ¹³C chemical shifts in the F2 dimension and the ¹H couplings in F1. The experiment is fairly insensitive as it is carbon-detected. Proton-carbon coupling constants are often used to help define e/z stereochemistry of double bonds or molecular conformations, for example, the torsion angles of peptides. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Parameter	Description Set from previously acquired CARBON*		
Spectral Width (sw)			
Acquisition time (at) Set from "Pulse Sequence" panel, controls the resolut F2, default 0.25s			
Scans per t1 increment (nt) Select typical choices from pull down menu*			
t1 Increments (ni)	Select typical choices from pull down menu*- controls the resolution in F1		
F1 spectral width	Set value for the average range of ${}^{\rm n}{\rm J}_{{\rm C},{\rm H}}$		
Steady State (ss)	Set from "Pulse Sequence" panel, turn on/off gradient cleanup between scans		

NOTE

Start Acquire	Process Show Time Acquire	Stop Sequence	Arrays	Seq. Help	
Defaults Acquisition Pulse Sequence PRESAT WET Channels Flags Future Actions Overview	Experiment: HETERO2DJ So Acquisition Options Scans per t1 increment t1 increments F1 spectral width	32 ▼ 64 ▼ 320 Hz	C13-C13 Corre	lation [Decoupler: H1] :elver Gain (dB): 30	

Processing

Automated processing is turned on by default, and the parameters are set to reasonable values, such that the resulting data after the acquisition usually require no further adjustment. The "Process" tab/"Basic" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (8k x 128 is the default), as well as a check box to turn on/off linear prediction and a pull-down to control the extent of linear prediction (default is off). Menus to quickly change the weighting functions in F2/F1 are also present; the parameters for the weighting functions are calculated automatically from the acquisition time and number of increments. It is important to note that this experiment employs mix-mode processing, with the F2 dimension absolute value and F1 phase-sensitive. This arrangement allows for the best resolution and sensitivity combination. As such, the optimal weighting functions are the defaults of a squared shifted sinebell for F2 and gaussian for F1. More processing details are found under some of the other "Process" panels, such as the "Default", "Weighting", and "More 2D" panels.

Tips, tricks, and next steps

- Spectral width (sw) setting transfers from a CARBON if the HETERO2DJ is set up from this experiment. Receiver gain (gain) is usually set to a high value (\geq 30), unless the sample is extremely concentrated or ¹³C-labelled.
- A typical value for sw1 of at least 3 times the largest expected one-bond coupling constant can avoid any potential folding of methyl quartets.
- The default number of steady state scans (ss) that are acquired before data acquisition to establish sample equilibrium is 32, which works for most samples. This value is changed on the "Acquisition" panel of the "Acquire" tab if necessary.
- The default parameters use a Grad-90-Grad steady state between scans, which helps cleanup un-relaxed magnetization. The default setting for this parameter is off.

• The (HC)EXSIDE experiment (see Chapter 7) can also be used to measure selective long-range H-C coupling constants and may provide better sensitivity, particularly when there are only one or two specific couplings of interest.

References:

W. P. Aue, J. Karhan, R. R. Ernst, J. Chem. Phys. 64 (1976) 4226-4227. (COSY)

L. Muller, A. Kumar, R. R. Ernst, J. Magn. Reson. 25 (1977) 383-390. (2DJ)

G. Bodenhausen, G. A. Morris, R. Freeman, D. L. Turner, J. Magn. Reson. 28 (1977) 17-28. (2DJ)

HOM02DJ

General description and usage

Description:

Two Dimensional homonuclear J-resolved spectroscopy.

Usage:

The HOMO2DJ experiment is used to acquire a 2-dimensional spectrum with the ¹H chemical shifts in the F2 dimension and the ¹H couplings in F1. This experiment can be used to obtain accurate measurements of couplings when there are complex multiplets and/or overlap in the 1D PROTON spectrum. This experiment can also be used to help resolve overlap in complex multi-component spectra, such as spectra of biofluids. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Parameter	Description Set from previously acquired PROTON*		
Spectral Width (sw)			
Acquisition time (at)	Set from "Pulse Sequence" panel, controls the resolution in F2, default 0.625s		
Scans per t1 increment (nt) Select typical choices from pull down menu*			
t1 Increments (ni)	Select typical choices from pull down menu*- controls the resolution in F1		
F1 spectral width	Set value for the average range of ⁿ J _{H,H} – don't forget couplings constants are both positive and negative		
Steady State (ss)	Set from "Pulse Sequence" panel, turn on/off gradient cleanup between scans		

NOTE

Defaults Acquisition	Experiment: HOMO2DJ Solv	vent: cdcl3 H1-H	1 Correlation [Decoupler: C13]
Pulse Sequence PRESAT WET Channels Flags Future Actions Overview	Acquisition Options Scans per 11 Increment 11 Increments F1 spectral width	2 ¥ × 64 Hz	Receiver Gain (dB): 30

Processing

Automated processing is turned on by default, and the parameters are set to reasonable values, such that the resulting data after the acquisition usually require no further adjustment. The "Process" tab/"Basic" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (8k x 128 is the default), as well as a check box to turn on/off linear prediction and a pull-down to control the extent of linear prediction (default is off). Menus to quickly change the weighting functions in F2/F1 are also present; the parameters for the weighting functions (defaults are squared sinebells) are calculated automatically from the acquisition time and number of increments. It is important to note that this experiment employs mix-mode processing, with the F2 dimension absolute value and F1 phase-sensitive. More processing details are found under some of the other "Process" panels, such as the "Default", "Weighting", and "More 2D" panels.

Tips, tricks, and next steps

- Spectral width (sw) and receiver gain (gain) settings transfer from a PROTON if the HOMO2DJ is set up from this experiment.
- It is highly recommended to adjust sw1 and ni such that ni/sw1 is equal to acquisition time (at) to accommodate the " 45° rotate" that is typically applied during processing. Such equal resolution in both F1 and F2 dimension results in much better F2 projection (which mimics a proton decoupled proton spectrum).
- The default number of steady state scans (ss) that are acquired before data acquisition to establish sample equilibrium is 32, which works for most samples. This value is changed on the "Acquisition" panel of the "Acquire" tab if necessary.
- The default parameters use a Grad-90-Grad steady state between scans, which helps cleanup un-relaxed magnetization. This can result in much cleaner spectra, especially when using shorter acquisition times (at) and relaxation delays (d1) (defaults are 0.625s and 1s respectively).

References:

W. P. Aue, J. Karhan, R. R. Ernst, J. Chem. Phys. 64 (1976) 4226-4227. (COSY)

L. Muller, A. Kumar, R. R. Ernst, J. Magn. Reson. 25 (1977) 383-390. (2DJ)

G. Bodenhausen, G. A. Morris, R. Freeman, D. L. Turner, J. Magn. Reson. 28 (1977) 17-28. (2DJ)

12 JSpectra

Tips, tricks, and next steps

Agilent VnmrJ 4 Experiment Guide

13 Hadamard Encoded - Hadamard

Hadamard Tab 418 dqcosyHT 420 gcosyHT 424 hetcorHT 428 hmbcHT 432 hsqcHT 436 hsqctocsyHT 440 noesyHT 444 roesyHT 450 tocsyHT 454

13 Hadamard Encoded - Hadamard Hadamard Tab

Hadamard Tab

This tab of the Experiment Selector contains a suite of 2D experiments that employ Hadamard encoding. The concept behind Hadamard encoding is to excite the interesting chemical shifts

with an array of frequencies. The Hadamard method of acquiring 2D spectra does offer a 2D spectrum recorded at a fraction of the time of the similar traditional 2D experiment. The sensitivity of a Hadamard experiment is comparable to that of a traditional experiment per unit of time. Consequently the advantage of the Hadamard experiment is realized only when there is enough sensitivity (i.e., sample concentration) to record a fast 2D spectrum.

The specific frequencies for the Hadamard matrix are obtained by selection from a PROTON or a CARBON spectrum as appropriate. The experiments include a full set of standard two-dimensional pulse sequences including homonuclear experiments (dqcosyHT, gcosyHT, tocsyHT, noesyHT, and roesyHT), heteronuclear experiments (hsqcHT, hmbcHT, and hetcorHT), as well as an hsqctocsyHT experiment. All the experiments are processed using the Hadamard transformation, which is set by default in the processing parameters.

Experiment S	Experiment Selector				å ×
HF_Expts	(HC)Crisis2		Hadamar	d	
Sel2D	Sel2D Dosy 2		D		Dosy 3D
Jn(CH)cor	r (H)Sel 1	D	(H	C)HetToxys
Service	(HH)Homo2	2D	JSpec	tra	J1(CH)corr
Common	Std 1D	((C)corr	S	/stem Studies
dqc	osyHT		gcosyHT		
hetcorHT		hmbcHT			
hsqcHT			hsqc	tocsyHT	
noesyHT			roe	esyHT	
toc	syHT				

13 Hadamard Encoded - Hadamard dqcosyHT

dqcosyHT

General description and usage

Description:

Two Dimensional double-quantum filtered J-correlation spectroscopy with Hadamard encoding.

Usage:

The dqcosyHT produces a 2-dimensional spectrum with peaks along the diagonal corresponding to the peaks in a 1D PROTON spectrum and crosspeaks between j-coupled protons. The Hadamard matrix is created from a previously acquired PROTON data set. The advantage of the dqcosyHT over the gcosyHT is that peaks with no double-quantum transitions (for example, singlets) are suppressed, producing cleaner spectra. The experiment is also phase sensitive, resulting in narrower peak shapes. The 90° pulse width is typically calibrated accurately for this experiment. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Parameter Description	
Hadamard Frequency List	Set from previously acquired PROTON- see Tips, tricks, and next steps for setup description
H1 pulse width (pw)	Type in calibrated 90° pulse value
Relaxation delay (d1)	Type in value- controls the delay between scans
Scans per increment (nt)	Select typical choices from pull down menu*
Steady state scans (ss)	Select typical choices from pull down menu*
Number of increments (ni)	Unlike ordinary 2D experiments the parameter ni defines the Hadamard matrix size (dictated by the number of regions that are excited)
Number of points in F2 (np)	Select typical choices from pull down menu- controls the resolution in F2
Fourier Number in F2	Select typical choices from pull down menu- usually 2*np

NOTE

uqcosynn		H1 pulse width	5.70	us
Hadamard Frequency	List Options	Relaxation delay	1	sec
Use 20 Hz line broadening to	Make HT frequency list	Scans per increment	1	-
_		Steady state scans	4	-
or Import HT frequencies fro	om exp 0	Number of increments	110	
12 lines found		Number of points in F2	4k	-
Local HT frequencies	Edit HT frequencies	Fourier Number in F2	8k	•
	Hadamard Frequency Use 20 Hz line broadening to or Import HT frequencies fre 12 lines found Local HT frequencies	Hadamard Frequency List Options Use 20 Hz line broadening to Make HT frequency list or Import HT frequencies from exp 12 lines found Local HT frequencies Edit HT frequencies	Hadamard Frequency List Options Relaxation delay Use 20 Hz line broadening to Make HT frequency list Scans per increment or Import HT frequencies from exp 0 Number of increments 12 lines found Number of points in F2 Fourier Number in F2	Hadamard Frequency List Options Relaxation delay 1 Use 20 Hz line broadening to Make HT frequency list Scans per increment 1 or Import HT frequencies from exp 0 16 Number of increments 16 12 Local HT frequencies Edit HT frequencies Number of points in F2 4k Fourier Number in F2 8k

13 Hadamard Encoded - Hadamard Processing

Processing

Automated processing is turned on by default, and the parameters are set to reasonable values, such that the resulting data after the acquisition usually require no further adjustment. Note that a Hadamard- transform is used, such that the parameter "proc1" is set to "ht", which is the default. The "Process" tab/"Default" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (4k x 256 is the default). Avoid arbitrarily setting the fn1 parameter, because its value is based upon the actual separation and bandwidths of frequencies in the Hadamard dimension, and is set automatically. More processing details are found under some of the other "Process" panels, such as the "Weighting" and "More 2D" panels.

Tips, tricks, and next steps

• To setup the Hadamard encoding frequencies, record, process, and autosave a PROTON spectrum. With the PROTON spectrum in current workspace select **Hadamard Experiments** > **Set Hadamard Encoding** from the Experiments menu to bring up the dialog box below. Click Create Une List to automatically create the frequency list:

📙 🛛 Edit Hada	mard Encoding	g Frequencies	×
HT linewidth, Ib [Hz] 20		Line List	
Create Line List Copy HT List to Exp Import HT List from Exp	0 0	freq [Hz from center] 1298.17 1227.75 1179.23	-
Select HT Frequencies Using Cursors Nearest line		1135.41 1096.29 -465.59 -662.78 -679.99 -756.68	-
Remove		Set list into parameter	s
Display	12 Lines found	CLEAR	
Save in Datadir Ethyline	danone_PROTON_(01.fid	
Edit	ndo Close	Abandon	

- Clear lock to edit the line list. Place the cursor on the peak to be added or removed and click Select or Remove as appropriate. Click Set into parameters, save the Hadamard frequency list in the Data directory using Save in Datadir, and close the dialog box. This frequency list is used for all subsequent Hadamard experiments with PROTON indirect dimension.
- The main advantage of the dqcosyHT versus the gcosyHT is better resolution (phase sensitive versus absolute value experiment) and the absence of singlets that display no couplings. For instance, t-butyl signals, which can be a large source of t1 noise because of their intensity, are suppressed in a dqcosyHT.
- The 90° pulse width needs to be calibrated accurately for best results from the dqcosyHT experiment. See the PROTON experiment in Chapter 2 to calibrate the pulse.

References:

W. P. Aue, J. Karhan, R. R. Ernst, J. Chem. Phys. 64 (1976) 4226-4227. (COSY)

U. Piantini, O. W. Sorensen, R. R. Ernst, J. Am. Chem. Soc. 104 (1982) 6800-6801. (Double Quantum Filter)

E. Kupce, R. Freeman, J. Magn. Reson. A105 (1993) 310-315. (Hadamard)

E. Kupce, T. Nishida, R. Freeman, Prog. NMR. Spectrosc. 42 (2003) 95-122. (Hadamard – Review)

13 Hadamard Encoded - Hadamard gcosyHT

gcosyHT

General description and usage

Description:

Two Dimensional J-correlation spectroscopy with Hadamard encoding and gradient coherence selection.

Usage:

The gcosyHT experiment produces a 2-dimensional spectrum with peaks along the diagonal corresponding to the peaks in a 1D PROTON spectrum and crosspeaks between j-coupled protons The Hadamard matrix is created from a previously acquired PROTON data set. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Parameter Description		
Hadamard Frequency List	Set from previously acquired PROTON- see Tips, tricks, and next steps for setup description	
H1 pulse width (pw)	Type in calibrated 90° pulse value	
Relaxation delay (d1)	Type in value- controls the delay between scans	
Scans per increment (nt)	Select typical choices from pull down menu*	
Steady state scans (ss)	Select typical choices from pull down menu*	
Number of increments (ni)	Unlike ordinary 2D experiments the parameter ni defines the Hadamard matrix size (dictated by the number of regions that are excited)	
Number of points in F2 (np)	Select typical choices from pull down menu- controls the resolution in F2	
Fourier Number in F2	Select typical choices from pull down menu- usually 2*np	

NOTE

Defaults Pulse Sequence Acquisition Calibrate Channels Flags Future Actions	gcosyHT Hadamard Frequency List Options Use 20 Hz line broadening to Make HT frequency list or Import HT frequencies from exp 0	H1 pulse width Relaxation delay Scans per increment Steady state scans Number of increments	5.70 us 1 sec 4 v 16
	Local HT frequencies Edit HT frequencies	Number of points in F2 Fourier Number in F2	128 • Bk •

13 Hadamard Encoded - Hadamard Processing

Processing

Automated processing is turned on by default, and the parameters are set to reasonable values, such that the resulting data after the acquisition usually require no further adjustment. Note that a Hadamard transform is used, such that the parameter "proc1" is set to "ht", which is the default. The "Process" tab/"Default" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (4k x 256 is the default). Avoid arbitrarily setting the fn1 parameter, because its value is based upon the actual separation and bandwidths of frequencies in the Hadamard dimension, and is set automatically. More processing details are found under some of the other "Process" panels, such as the "Weighting" and "More 2D" panels.

Tips, tricks, and next steps

• To setup the Hadamard encoding frequencies, record, process, and autosave a PROTON spectrum. With the PROTON spectrum in current workspace select **Hadamard Experiments > Set Hadamard Encoding** from the Experiments menu to bring up the dialog box below. Click <u>Create list</u> to automatically create the frequency list:

🔚 🛛 Edit Hada	mard Encoding	g Frequencies	×
HT linewidth, Ib (Hz) 20		Line List	
Create Line List Copy HT List to Exp Import HT List from Exp	0 0	freq [Hz from center] 1298.17 1227.75 1179.23	
Select HT Frequencies Using Cursors Nearest line		1135.41 1096.29 -465.59 -662.78 -679.99	
Select Remove		Set list into parameters	
Save in Datadir Ethylin	12 Lines found danone_PROTON_(D1.fid	
Edit	ndo Close	Abandon	

• Clear lock to edit the line list. Place the cursor on the peak to be added or removed and click <u>Select</u> or <u>Remove</u> as appropriate. Click <u>Set list into parameters</u>, save the Hadamard frequency list in the Data directory using <u>Save in Datader</u>, and close the dialog box. This frequency list is used for all subsequent Hadamard experiments with PROTON indirect dimension.

References:

W. P. Aue, J. Karhan, R. R. Ernst, J. Chem. Phys. 64 (1976) 4226-4227. (COSY)

R. E. Hurd, J. Magn. Reson. 87 (1990) 422-428. (Gradient based Coherence Selection)

E. Kupce, R. Freeman, J. Magn. Reson. A105 (1993) 310-315. (Hadamard)

E. Kupce, T. Nishida, R. Freeman, Prog. NMR. Spectrosc. 42 (2003) 95-122. (Hadamard – Review)

13 Hadamard Encoded - Hadamard hetcorHT

hetcorHT

General description and usage

Description:

Two Dimensional heteronuclear 1-bond correlation with Hadamard encoding (carbon observe).

Usage:

The hetcorHT experiment is used to acquire a 2-dimensional spectrum to correlate protons to directly attached carbons, however unlike the HSQC/HMQC experiments it is carbon-detected, meaning the F1 dimension is ¹H and the F2 dimension is ¹³C. The Hadamard matrix is created from a previously acquired PROTON data set. The experiment is much less sensitive than the proton-detected hsqcHT, and should only be used under special circumstances where higher resolution is desired in the carbon dimension. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Parameter	Description
Hadamard Frequency List	Set from previously acquired PROTON- see Tips, tricks, and next steps for setup description
H1/C13 pulse widths (pp/pw)	Type in calibrated 90° pulse values
Relaxation delay (d1)	Type in value- controls the delay between scans
Scans per increment (nt)	Select typical choices from pull down menu*
Steady state scans (ss)	Select typical choices from pull down menu*
Number of increments (ni)	Unlike ordinary 2D experiments the parameter ni defines the Hadamard matrix size (dictated by the number of regions that are excited)
Number of points in F2 (np)	Select typical choices from pull down menu- controls the resolution in F2
Fourier Number in F2	Select typical choices from pull down menu- usually 2*np

NOTE

13 Hadamard Encoded - Hadamard Processing

Processing

Automated processing is turned on by default, and the parameters are set to reasonable values, such that the resulting data after the acquisition usually require no further adjustment. Note that a Hadamard transform is used, such that the parameter "proc1" is set to "ht", which is the default. The "Process" tab/"Default" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (4k x 256 is the default). Avoid arbitrarily setting the fn1 parameter, because its value is based upon the actual separation and bandwidths of frequencies in the Hadamard dimension, and is set automatically. More processing details are found under some of the other "Process" panels, such as the "Weighting" and "More 2D" panels.

Tips, tricks, and next steps

• To setup the Hadamard encoding frequencies, record, process, and autosave a PROTON spectrum. With the PROTON spectrum in current workspace select **Hadamard Experiments > Set Hadamard Encoding** from the Experiments menu to bring up the dialog box below. Click <u>Create line line</u> to automatically create the frequency list:

🔚 🛛 Edit Hada	mard Encoding	g Frequencies	×
HT linewidth, Ib (Hz) 20		Line List	
Create Line List Copy HT List to Exp Import HT List from Exp	0 0	freq [Hz from center] 1298.17 1227.75 1179.23	
Select HT Frequencies Using Cursors Nearest line		1135.41 1096.29 -465.59 -662.78 -679.99	
Select Remove		Set list into parameters	
Save in Datadir Ethylin	12 Lines found danone_PROTON_(D1.fid	
Edit	ndo Close	Abandon	

- Clear lock to edit the line list. Place the cursor on the peak to be added or removed and click select or remove as appropriate. Click set its into parameters , save the Hadamard frequency list in the Data directory using save in Datadir, and close the dialog box. This frequency list is used for all subsequent Hadamard experiments with PROTON indirect dimension.
- The 90° pulse widths for ¹H and ¹³C need to be calibrated accurately for best results from the hetcorHT experiment.
- In general, the hsqcHT experiment is more sensitive than the hetcorHT. The advantage of the hetcorHT, though, is that a much higher resolution is achieved for the carbon, the F2, dimension. The resulting proton spectrum along the F1 dimensions is effectively a ¹H decoupled proton spectrum.
- Parameters to adjust the type and power for $^{13}\mathrm{C}$ and/or $^{1}\mathrm{H}$ decoupling are found on the "Pulse Sequence" tab.

References:

A. Bax, G. A. Morris, J. Magn. Reson. 42 (1981) 501-505. (HETCOR)

E. Kupce, R. Freeman, J. Magn. Reson. A105 (1993) 310-315. (Hadamard)

E. Kupce, T. Nishida, R. Freeman, Prog. NMR. Spectrosc. 42 (2003) 95-122. (Hadamard – Review)

13 Hadamard Encoded - Hadamard hmbcHT

hmbcHT

General description and usage

Description:

Two Dimensional heteronuclear multiple-bond J-correlation spectroscopy with Hadamard encoding.

Usage:

The hmbcHT experiment is used to acquire a two-dimensional spectrum to correlate protons to carbons over long range couplings, usually over 2-3 bonds. The Hadamard matrix is created from a previously acquired CARBON data set before acquisition. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Parameter	Description
Hadamard Frequency List	Set from previously acquired CARBON- see Tips, tricks, and next steps for setup description
H1/C13 pulse widths (pw/pwx)	Type in calibrated 90° pulse values
Relaxation delay (d1)	Type in value- controls the delay between scans
Scans per increment (nt)	Select typical choices from pull down menu*
Steady state scans (ss)	Select typical choices from pull down menu*
Number of increments (ni)	Unlike ordinary 2D experiments the parameter ni defines the Hadamard matrix size (dictated by the number of regions that are excited)
Number of points in F2 (np)	Select typical choices from pull down menu- controls the resolution in F2
Fourier Number in F2	Select typical choices from pull down menu- usually 2*np

NOTE

13 Hadamard Encoded - Hadamard Processing

Processing

Automated processing is turned on by default, and the parameters are set to reasonable values, such that the resulting data after the acquisition usually require no further adjustment. Note that a Hadamard transform is used, such that the parameter "proc1" is set to "ht", which is the default. The "Process" tab/"Default" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (4k x 256 is the default). Avoid arbitrarily setting the fn1 parameter, because its value is based upon the actual separation and bandwidths of frequencies in the Hadamard dimension, and is set automatically. More processing details are found under some of the other "Process" panels, such as the "Weighting" and "More 2D" panels.

Tips, tricks, and next steps

• To setup the Hadamard encoding frequencies, record, process, and autosave a CARBON spectrum. With the PROTON spectrum in current workspace select Hadamard Experiments > Set Hadamard Encoding from the Experiments menu to bring up the dialog box below. Click Create Line List to automatically create the frequency list:

📕 🛛 Edit Hadama	rd Encoding	g Frequencies	×
HT linewidth, Ib [Hz] 20		Line List	
Create Line List Copy HT List to Exp Import HT List from Exp	lock 0 0	freq [Hz from center] 1298.17 1227.75 1179.23	
Select HT Frequencies Using Cursors Nearest line		1135.41 1096.29 -465.59 -662.78 -679.99 -756.68	
Remove		Set list into parameters	
Display 1	2 Lines found	CLEAR	
Save in Datadir Ethylindan	one_PROTON_C	1.fid	
Edit	Close	Abandon	
- Clear lock to edit the line list. Place the cursor on the peak to be added or removed and click <u>select</u> or <u>Remove</u> as appropriate. Click <u>set into parameters</u>, save the Hadamard frequency list in the Data directory using <u>save in Datadr</u>, and close the dialog box. This frequency list is used for all subsequent Hadamard experiments with CARBON indirect dimension.
- While editing the CARBON frequency list, it is important to remove solvent resonances from the list.
- Parameters to adjust the J-couplings ${}^{1}J_{C,H}$ and ${}^{n}J_{C,H}$ (defaults are 140 Hz and 8 Hz) are found on the "Pulse Sequence" tab. The jnxh sets the optimal value of the proton-carbon coupling constant for detection. Using smaller values may increase the chances of seeing longer-range correlations, but at the expense of correlations with larger coupling constants, and, more importantly, at the expense of sensitivity.

- A. Bax, M. F. Summers, J. Am. Chem. Soc. 108 (1986) 2093-2094. (HMBC)
- E. Kupce, R. Freeman, J. Magn. Reson. A105 (1993) 310-315. (Hadamard)

13 Hadamard Encoded - Hadamard hsqcHT

hsqcHT

General description and usage

Description:

Two Dimensional heteronuclear single-quantum 1-bond J-correlation spectroscopy with Hadamard encoding.

Usage:

The hsqcHT experiment is used to acquire a 2-dimensional spectrum to correlate protons to directly attached carbons. The Hadamard matrix is created from a previously acquired CARBON data set before acquisition. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Key parameters

Parameters	Description
Hadamard Frequency List	Set from previously acquired PROTON- see Tips, tricks, and next steps for setup description
H1/C13 pulse widths (pw/pwx)	Type in calibrated 90° pulse values
Relaxation delay (d1)	Type in value- controls the delay between scans
Scans per increment (nt)	Select typical choices from pull down menu*
Steady state scans (ss)	Select typical choices from pull down menu*
Number of increments (ni)	Unlike ordinary 2D experiments the parameter ni defines the Hadamard matrix size (dictated by the number of regions that are excited)
Number of points in F2 (np)	Select typical choices from pull down menu- controls the resolution in F2
Fourier Number in F2	Select typical choices from pull down menu- usually 2*np

NOTE

Specific values for these parameters may be typed manually in the appropriate boxes on the "Acquisition" panel.

13 Hadamard Encoded - Hadamard Processing

Processing

Automated processing is turned on by default, and the parameters are set to reasonable values, such that the resulting data after the acquisition usually require no further adjustment. Note that a Hadamard transform is used, such that the parameter "proc1" is set to "ht", which is the default. The "Process" tab/"Default" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (4k x 256 is the default). Avoid arbitrarily setting the fn1 parameter, because its value is based upon the actual separation and bandwidths of frequencies in the Hadamard dimension, and is set automatically. More processing details are found under some of the other "Process" panels, such as the "Weighting" and "More 2D" panels.

Tips, tricks, and next steps

• To setup the Hadamard encoding frequencies, record, process, and autosave a CARBON spectrum. With the PROTON spectrum in current workspace select Experiments menu [®] Hadamard Experiments [®] Set Hadamard Encoding from the menu to bring up the dialog box below. Click Create Line List to automatically create the frequency list:

	Edit Hadar	mard Encoding	g Frequencies	×	
	HT linewidth, lb [Hz] 0.5	_	Line List	_	
	Create Line List	lock	freq [Hz from center]	•	
1	Copy HT List to Exp	0	4403.25		
-	Import UT List from Evo	0	2/09.21	_	
-	Import HT LIST TOM EXP		1737.63		
			1659.78		
	Select HT Frequencies		1388.86		
	Using Cursors		-3282.20		
	Nearest line		-3313.34	-	
	Select		-3347.59	~	
	Remove		Set list into parameters		
	Display	13 Lines found	CLEAR		
	Save in Datadir Ethylindanone_CARBON_01.fid				
	Edit	do Close	Abandon		

- Clear lock to edit the line list. Place the cursor on the peak to be added or removed and click Select or Remove as appropriate. Click Set list into parameters, save the Hadamard frequency list in the Data directory using Save in Datadir, and close the dialog box. This frequency list is used for all subsequent Hadamard experiments with CARBON indirect dimension.
- While editing the CARBON frequency list, it is important to remove solvent resonances from the list.
- Parameters to adjust the type and power for ${}^{13}C$ decoupling are found on the "Pulse Sequence" tab. To measure ${}^{1}H{}^{-13}C$ (or ${}^{1}H{}^{-}X$) coupling constants, the carbon decoupling is turned off by entering "nnn" in the Channel 2 "Dec On/Off" entry on the "Channels" panel or alternatively by typing dm='nnn' on the command line.

G. Bodenhausen, D. J. Ruben, Chem. Phys. Lett. 69 (1980) 185-189. (HSQC)

E. Kupce, R. Freeman, J. Magn. Reson. A105 (1993) 310-315. (Hadamard)

13 Hadamard Encoded - Hadamard hsqctocsyHT

hsqctocsyHT

General description and usage

Description:

Two Dimensional heteronuclear single-quantum 1-bond J-correlation spectroscopy with a TOCSY spinlock and Hadamard encoding.

Usage:

The hsqctocsyHT experiment is used to acquire a 2-dimensional spectrum to connect ¹H TOCSY correlations with ¹³C nuclei chemical shift information For example, Proton A is in the same spin system as proton B at carbon chemical shift X. The experiment is useful to resolve overlapping spin systems in the ¹H TOCSY by spreading them out over the carbon (or other X-nuclei) chemical shift range. The Hadamard matrix is created from a previously acquired CARBON data set. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Key parameters

Parameter	Description
Hadamard Frequency List	Set from previously acquired CARBON- see Tips, tricks, and next steps for setup description
H1/C13 pulse widths (pw/pwx)	Type in calibrated 90° pulse values
Relaxation delay (d1)	Type in value- controls the delay between scans
Scans per increment (nt)	Select typical choices from pull down menu*
Steady state scans (ss)	Select typical choices from pull down menu*
Number of increments (ni)	Unlike ordinary 2D experiments the parameter ni defines the Hadamard matrix size (dictated by the number of regions that are excited)
Mixing time (mix)	Select from pull down menu- 80ms works best for large spin systems*
Number of points in F2 (np)	Select typical choices from pull down menu- controls the resolution in F2
Fourier Number in F2	Select typical choices from pull down menu- usually 2*np
Hadamard Frequency List	Set from previously acquired CARBON- see Tips, tricks, and next steps for setup description
H1/C13 pulse widths (pw/pwx)	Type in calibrated 90° pulse values

NOTE

Specific values for these parameters may be typed manually in the appropriate boxes on the "Acquisition" panel.

13 Hadamard Encoded - Hadamard

Processing

Processing

Automated processing is turned on by default, and the parameters are set to reasonable values, such that the resulting data after the acquisition usually require no further adjustment. Note that a Hadamard transform is used, such that the parameter "proc1" is set to "ht", which is the default. The "Process" tab/"Default" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (4k x 256 is the default). Avoid arbitrarily setting the fn1 parameter, because its value is based upon the actual separation and bandwidths of frequencies in the Hadamard dimension, and is set automatically. More processing details are found under some of the other "Process" panels, such as the "Weighting" and "More 2D" panels.

Tips, tricks, and next steps

• To setup the Hadamard encoding frequencies, record, process, and autosave a CARBON spectrum. With the PROTON spectrum in current workspace select **Hadamard Experiments** > **Set Hadamard Encoding** from the Experiments menu to bring up the dialog box below. Click <u>Create Line List</u> to automatically create the frequency list:

Edit Hada	amard Encoding	g Frequencies	
Create Line List Copy HT List to Exp Import HT List from Exp	0 0 0	freq [Hz from center] 4403.25 2709.21 2472.55	•
Select HT Frequencies Using Cursors Nearest line Select		1737.63 1659.78 1388.86 -3282.20 -3313.34 -3347.59	-
Remove Display	13 Lines found	Set list into paramete CLEAR	rs
Save in Datadir Ethylin	idanone_CARBON_0	1.fid	
Edit	ndo Close	Abandon	

- Clear lock to edit the line list. Place the cursor on the peak to be added or removed and click Select or Remove as appropriate. Click Set list into parameters, save the Hadamard frequency list in the Data directory using Save in Datadir, and close the dialog box. This frequency list is used for all subsequent Hadamard experiments with CARBON indirect dimension.
- While editing the CARBON frequency list, it is important to remove solvent resonances from the list.

K. E. Kover, O. Prakash, V, J. Hruby, J. Magn. Reson. A103 (1993) 92-96. (z-filtered HSQC-TOCSY)

E. Kupce, R. Freeman, J. Magn. Reson. A105 (1993) 310-315. (Hadamard)

13 Hadamard Encoded - Hadamard noesyHT

noesyHT

General description and usage

Description:

Two Dimensional through-space correlation spectroscopy with Hadamard encoding.

Usage:

The noesyHT experiment produces a 2-dimensional spectrum with peaks along the diagonal corresponding to the peaks in a 1D PROTON and crosspeaks between protons that are close in space (typically <5 Å). The Hadamard matrix is created from a previously acquired PROTON data set. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Key parameters

Parameter	Description
Hadamard Frequency List	Set from previously acquired PROTON- see Tips, tricks, and next steps for setup description
H1 pulse width (pw)	Type in calibrated 90° pulse value
Relaxation delay (d1)	Type in value- controls the delay between scans
Mixing time (mix)	Select from pull down menu- 500ms works well as a starting point*
Scans per increment (nt)	Select typical choices from pull down menu*
Steady state scans (ss)	Select typical choices from pull down menu*
Number of increments (ni)	Unlike ordinary 2D experiments the parameter ni defines the Hadamard matrix size (dictated by the number of regions that are excited)
Number of points in F2 (np)	Select typical choices from pull down menu- controls the resolution in F2
Fourier Number in F2	Select typical choices from pull down menu- usually 2*np

NOTE

Specific values for these parameters may be typed manually in the appropriate boxes on the "Acquisition" panel.

Defaults Pulse Sequence Acquisition Calibrate Channels Flags Future Actions	noesyHT Hadamard Frequency List Options Use 20 Hz line broadening to Make HT frequency list or Import HT frequencies from exp 0	H1 pulse width Relaxation delay Mixing time Scans per increment Steady state scans	5.70 us 1 sec 500 ▼ ms 4 ▼ 4 ▼
	Local HT frequencies Edit HT frequencies	Number of points in F2 Fourier Number in F2	1026 ¥ 8k ¥

13 Hadamard Encoded - Hadamard Processing

Processing

Automated processing is turned on by default, and the parameters are set to reasonable values, such that the resulting data after the acquisition usually require no further adjustment. Note that a Hadamard transform is used, such that the parameter "proc1" is set to "ht", which is the default. The "Process" tab/"Default" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (4k x 256 is the default). Avoid arbitrarily setting the fn1 parameter, because its value is based upon the actual separation and bandwidths of frequencies in the Hadamard dimension, and is set automatically. More processing details are found under some of the other "Process" panels, such as the "Weighting" and "More 2D" panels.

Tips, tricks, and next steps

• To setup the Hadamard encoding frequencies, record, process, and autosave a PROTON spectrum. With the PROTON spectrum in current workspace select Hadamard Experiments > Set Hadamard Encoding from the Experiments menu to bring up the dialog box below. Click Create Line List to automatically create the frequency list:

- Clear Lock to edit the line list. Place the cursor on the peak to be added or removed and click Select or Remove as appropriate. Click Set list into parameters, save the Hadamard frequency list in the Data directory using Save in Datadir, and close the dialog box. This frequency list is used for all subsequent Hadamard experiments with PROTON indirect dimension.
- The default parameters use a Grad-90-Grad steady state between scans, which helps cleanup un-relaxed magnetization. This can result in much cleaner spectra, especially when using shorter acquisition times (at) and relaxation delays (d1) (defaults are 0.15s and 1s, respectively).
- A mixing time of 500ms is a good starting place for most small molecules. Very small molecules and/or weak NOE interactions may require longer mixing times (up to ~1s). Longer mixing times, however, increase the possibility of spin diffusion for larger molecules, a situation where the magnetization is transferred through space, and then through coupling, resulting in spurious correlations between protons. The NOE correlation is confirmed by acquiring a build-up curve, whereby the mixing time is slowly increased in 50-100ms increments until the NOE intensity ceases to increase and levels off. This is the optimal mixing time.
- Medium-sized molecules (MW ~500 depending on the molecule and spectrometer frequency) can exhibit zero or very small NOEs. Consider acquiring a roesyHT for these molecules. Alternatively one may consider, (i) choosing a more viscous solvent such as d₆-DMSO or d₆-DMSO with ~10-20% D₂O (which results in slower molecular tumbling and hence generates a positive NOE enhancement like larger molecules), (ii) selecting a lower temperature (if the solvent allows it), or (iii) running the experiment on a spectrometer with higher field strength (if available).
- Small molecules may have crosspeaks arising from chemical exchange during the NOE mixing time and have the same phase as the diagonal. The exchange crosspeaks provide information about inter-converting molecular conformations and can be used to recognize such molecular dynamic processes.

S. Macura, Y. Huang, D. Suter, R. R. Ernst, J. Magn. Reson. 43 (1981) 259-281. (NOESY)

13 Hadamard Encoded - Hadamard

Tips, tricks, and next steps

Hadamard Encoded - Hadamard 13 Tips, tricks, and next steps

13 Hadamard Encoded - Hadamard roesyHT

roesyHT

General description and usage

Description:

Two Dimensional through-space correlation spectroscopy in the rotating frame with Hadamard encoding.

Usage:

The roesyHT experiment produces a 2-dimensional spectrum with peaks along the diagonal corresponding to the peaks in a 1D PROTON and crosspeaks between protons that are close in space (typically <4 Å). The Hadamard matrix is created from a previously acquired PROTON data set. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Key parameters

Parameters	Description
Hadamard Frequency List	Set from previously acquired PROTON- see Tips, tricks, and next steps for setup description
H1 pulse width (pw)	Type in calibrated 90° pulse value
Relaxation delay (d1)	Type in value- controls the delay between scans
Mixing time (mix)	Select from pull down menu- 200ms works well for most small molecules* DO NOT EXCEED 500ms*
Scans per increment (nt)	Select typical choices from pull down menu*
Steady state scans (ss)	Select typical choices from pull down menu*
Number of increments (ni)	Unlike ordinary 2D experiments the parameter ni defines the Hadamard matrix size (dictated by the number of regions that are excited)
Number of points in F2 (np)	Select typical choices from pull down menu- controls the resolution in F2
Fourier Number in F2	Select typical choices from pull down menu- usually 2*np

NOTE

Specific values for these parameters may be typed manually in the appropriate boxes on the "Acquisition" panel.

13 Hadamard Encoded - Hadamard Processing

Processing

Automated processing is turned on by default, and the parameters are set to reasonable values, such that the resulting data after the acquisition usually require no further adjustment. Note that a Hadamard transform is used, such that the parameter "proc1" is set to "ht", which is the default. The "Process" tab/"Default" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (4k x 256 is the default). Avoid arbitrarily setting the fn1 parameter, because its value is based upon the actual separation and bandwidths of frequencies in the Hadamard dimension, and is set automatically. More processing details are found under some of the other "Process" panels, such as the "Weighting" and "More 2D" panels.

Tips, tricks, and next steps

• To setup the Hadamard encoding frequencies, record, process, and autosave a PROTON spectrum. With the PROTON spectrum in current workspace select Hadamard Experiments > Set Hadamard Encoding from the Experiments menu to bring up the dialog box below. Click Create Line List to automatically create the frequency list:

- Clear lock to edit the line list. Place the cursor on the peak to be added or removed and click Select or Remove as appropriate. Click Set list into parameters, save the Hadamard frequency list in the Data directory using Save in Datadir, and close the dialog box. This frequency list is used for all subsequent Hadamard experiments with PROTON indirect dimension.
- A mixing time of 200ms is a good starting place for most small molecules. Very weak ROE interactions may require longer mixing times (up to \sim 500ms), but keep the mixing time shorter as longer spinlocks may result in sample heating. It is a good idea not to exceed a 500ms spinlock.
- Because the mixing time for the roesyHT is limited, weaker correlations may not be observable. roesyHT is the experiment of choice over noesyHT for medium-sized molecules (MW ~800-1000 depending on the molecule and spectrometer frequency), as they can exhibit zero or very small NOEs. One may consider running noesyHT experiments (which can be run with longer mixing times) by (i) choosing a more viscous solvent such as d_6 -DMSO or d_6 -DMSO with ~10-20% D₂O (which results in slower molecular tumbling and hence generates a positive NOE enhancement like larger molecules), (ii) selecting a lower temperature (if the solvent allows it), or (iii) running the experiment on a spectrometer with higher field strength (if available).
- Crosspeaks in the roesyHT spectrum that have the same phase as the diagonal may arise from chemical exchange during the ROE mixing time, or due to TOCSY-type correlations (couplings). The exchange crosspeaks provide information about inter-converting molecular conformations and can be used to recognize such molecular dynamic processes.

- A. Bax, D. G. Davis, J. Magn. Reson. 63 (1985) 207-213. (ROESY)
- E. Kupce, R. Freeman, J. Magn. Reson. A105 (1993) 310-315. (Hadamard)

13 Hadamard Encoded - Hadamard tocsyHT

tocsyHT

General description and usage

Description:

Two Dimensional total J-correlation spectroscopy for scalar coupled spin systems with Hadamard encoding.

Usage:

The tocsyHT experiment produces a 2-dimensional spectrum with peaks along the diagonal corresponding to the peaks in a 1D PROTON and crosspeaks between all protons in a scalar coupled spin system. The Hadamard matrix is created from a previously acquired PROTON data set. All parameters are set from the "Acquire" tab/"Defaults" panel unless otherwise specified.

Key parameters

Parameters	Description
Hadamard Frequency List	Set from previously acquired PROTON- see Tips, tricks, and next steps for setup description
H1 pulse width (pw)	Type in calibrated 90° pulse value
Relaxation delay (d1)	Type in value- controls the delay between scans
Mixing time (mix)	Select from pull down menu- 80ms works best for large spin systems*
Scans per increment (nt)	Select typical choices from pull down menu*
Steady state scans (ss)	Select typical choices from pull down menu*
Number of increments (ni)	Unlike ordinary 2D experiments the parameter ni defines the Hadamard matrix size (dictated by the number of regions that are excited)
Number of points in F2 (np)	Select typical choices from pull down menu- controls the resolution in F2
Fourier Number in F2	Select typical choices from pull down menu- usually 2*np

NOTE

Specific values for these parameters may be typed manually in the appropriate boxes on the "Acquisition" panel.

13 Hadamard Encoded - Hadamard Processing

Processing

Automated processing is turned on by default, and the parameters are set to reasonable values, such that the resulting data after the acquisition usually require no further adjustment. Note that a Hadamard transform is used, such that the parameter "proc1" is set to "ht", which is the default. The "Process" tab/"Default" panel contains many of the commonly modified processing parameters, such as a pull-down menu to change the FT data size (4k x 256 is the default). Avoid arbitrarily setting the fn1 parameter, because its value is based upon the actual separation and bandwidths of frequencies in the Hadamard dimension, and is set automatically. More processing details are found under some of the other "Process" panels, such as the "Weighting" and "More 2D" panels.

Tips, tricks, and next steps

• To setup the Hadamard encoding frequencies, record, process, and autosave a PROTON spectrum. With the PROTON spectrum in current workspace select Hadamard Experiments > Set Hadamard Encoding from the Experiments menu to bring up the dialog box below. Click Create Line List to automatically create the frequency list:

- Clear lock to edit the line list. Place the cursor on the peak to be added or removed and click Select or Remove as appropriate. Click Set list into parameters, save the Hadamard frequency list in the Data directory using Save in Datadir, and close the dialog box. This frequency list is used for all subsequent Hadamard experiments with PROTON indirect dimension.
- The spinlock time ultimately controls how far along the spin system the correlations extend. A value of 50 or 80ms is typically a good choice.
- A pull-down menu to change the waveform for the tocsyHT spinlock is found on the "Pulse Sequence". The DIPSI2 spinlock pattern is a good choice for small molecules and FLOPSY8 is typically used for larger molecules.

A. Bax, D. G. Davis, J. Magn. Reson. 63 (1985) 355-360. (TOCSY with MLEV17)

E. Kupce, R. Freeman, J. Magn. Reson. A105 (1993) 310-315. (Hadamard)

13 Hadamard Encoded - Hadamard

Tips, tricks, and next steps

Index

Index

Symbols

(C)APT, 62 (C)DEPT, 66 (H)HomoDec, 74 (H)PRESAT, 42 (H)wet1D, 48 (HC)bsgHMBC, 258 (HC)bsgHS0CAD, 254 (HC)bsHS0CAD, 250 (HC)bsHS0CR0ESY, 266 (HC)bsHS0CR0ESY, 272 (HC)EXSIDE, 262 (HH)bsN0ESY, 286 (HH)bsR0ESY, 278 (HH)bsT0CSY, 282

A

ADEQUATEAD, **378** ASAPHMQC, **168**

B

BilevelDec, 82

C

c2hsqc, 298 c2hsqcse, 294 CARBON, 30 CARBONecho, 78 CIGAR, 192 CIGARAD, 196 COSY, 94

D

DQCOSY, 102 dqcosyHT, 418

F

FH_gHETCOR, 386 FH_HOESY, 390 FLUORINE, 34 FObs_HDec, 394

G

gc2h2bc, 306 gc2h2bcme, 302 gc2hmbc, 316 gc2hmbcme, 310 gc2hsqc, 324 gc2hsqcse, 320 qCOSY, 90 gcosyHT, 422 gDQCOSY, 98 gH2BC, 188 gH2BCAD, 184 gHETCOR, 164 gHMBC, 180 gHMBCAD, 176 gHMBCmeAD, 204 gHMBCRELAY, 210 gHMQC, 156 gHMQCTOXY, 362 gHSQC, 148 gHSQCAD, 138 gHSQCADTOXY, 338 gHSQCTOXY, 350

Н

HETCOR, 160 hetcorHT, 426 HETERO2DJ, 406 HMBC, 200 hmbcHT, 430 HMOC, 152 HMOCTOXY, 356 HObs_FDec, 398 HOM02DJ, 410 HS0C, 144 HS0CAD, 134 HS0CADT0XY, 332 hsqcHT, 434 hsqctocsyHT, 438 HS0CT0XY, 344

INADEQUATE, **370** INADEQUATEAD, **374**

Μ

Modular Experiment Setup, 20

Ν

NOESY, 122 NOESY1D, 218 noesyHT, 442

Ρ

PHOSPHORUS, 38 PROTON, 26 PureShift 1D, 70

R

ROESY, 114 ROESY1D, 224 ROESYAD, 118 roesyHT, 448

S

selexcit, 238 stepNOESY1D, 242

Т

T1 MEASURE, 54

Index

T2_MEASURE, **58** TOCSY, **106** TOCSY1D, **230** tocsyHT, **452**

Ζ

zCOSY, **126** zTOCSY, **110** zTOCSY1D, **234**

Index

In this book

This guide provides more information about the small-molecule liquids experiments available in the Agilent VnmrJ 4 Experiment Selector.

© Agilent Technologies, Inc. 2013

Revision A, March 2013

G7446-90515

Agilent Technologies